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Are Your Polyhedra
the Same as My Polyhedra?

Branko Grünbaum

1 Introduction

“Polyhedron” means different things to different people. There is very little
in common between the meaning of the word in topology and in geometry.
But even if we confine attention to geometry of the 3-dimensional Euclidean
space – as we shall do from now on – “polyhedron” can mean either a solid
(as in “Platonic solids”, convex polyhedron, and other contexts), or a surface
(such as the polyhedral models constructed from cardboard using “nets”,
which were introduced by Albrecht Dürer [17] in 1525, or, in a more mod-
ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of
points (“vertices”) and line-segments (“edges”) organized in a suitable way
into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”,
diagrams of which have been presented first by Luca Pacioli [44] in 1498 and
attributed to Leonardo da Vinci). The last alternative is the least usual one
– but it is close to what seems to be the most useful approach to the theory
of general polyhedra. Indeed, it does not restrict faces to be planar, and
it makes possible to retrieve the other characterizations in circumstances in
which they reasonably apply: If the faces of a “surface” polyhedron are sim-
ple polygons, in most cases the polyhedron is unambiguously determined by
the boundary circuits of the faces. And if the polyhedron itself is without
selfintersections, then the “solid” can be found from the faces. These reasons,
as well as some others, seem to warrant the choice of our approach.

Before deciding on the particular choice of definition, the following facts
– which I often mention at the start of courses or lectures on polyhedra –
should be considered. The regular polyhedra were enumerated by the math-
ematicians of ancient Greece; an account of these five “Platonic solids” is
the final topic of Euclid’s “Elements” [18]. Although this list was considered
to be complete, two millennia later Kepler [38] found two additional regular
polyhedra, and in the early 1800’s Poinsot [45] found these two as well as
two more; Cauchy [7] soon proved that there are no others. But in the 1920’s
Petrie and Coxeter found (see [8]) three new regular polyhedra, and proved
the completeness of that enumeration. However, in 1977 I found [21] a whole
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which were introduced by Albrecht Dürer [17] in 1525, or, in a more mod-
ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of
points (“vertices”) and line-segments (“edges”) organized in a suitable way
into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”,
diagrams of which have been presented first by Luca Pacioli [44] in 1498 and
attributed to Leonardo da Vinci). The last alternative is the least usual one
– but it is close to what seems to be the most useful approach to the theory
of general polyhedra. Indeed, it does not restrict faces to be planar, and
it makes possible to retrieve the other characterizations in circumstances in
which they reasonably apply: If the faces of a “surface” polyhedron are sim-
ple polygons, in most cases the polyhedron is unambiguously determined by
the boundary circuits of the faces. And if the polyhedron itself is without
selfintersections, then the “solid” can be found from the faces. These reasons,
as well as some others, seem to warrant the choice of our approach.

Before deciding on the particular choice of definition, the following facts
– which I often mention at the start of courses or lectures on polyhedra –
should be considered. The regular polyhedra were enumerated by the math-
ematicians of ancient Greece; an account of these five “Platonic solids” is
the final topic of Euclid’s “Elements” [18]. Although this list was considered
to be complete, two millennia later Kepler [38] found two additional regular
polyhedra, and in the early 1800’s Poinsot [45] found these two as well as
two more; Cauchy [7] soon proved that there are no others. But in the 1920’s
Petrie and Coxeter found (see [8]) three new regular polyhedra, and proved
the completeness of that enumeration. However, in 1977 I found [21] a whole



Are Your Polyhedra
the Same as My Polyhedra?

Branko Grünbaum
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1 Introduction

“Polyhedron” means different things to different people. There is very little
in common between the meaning of the word in topology and in geometry.
But even if we confine attention to geometry of the 3-dimensional Euclidean
space – as we shall do from now on – “polyhedron” can mean either a solid
(as in “Platonic solids”, convex polyhedron, and other contexts), or a surface
(such as the polyhedral models constructed from cardboard using “nets”,
which were introduced by Albrecht Dürer [17] in 1525, or, in a more mod-
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lot of new regular polyhedra, and soon thereafter Dress proved [15], [16] that
one needs to add just one more polyhedron to make my list complete. Then,
about ten years ago I found [22] a whole slew of new regular polyhedra, and
so far nobody claimed to have found them all.

How come that results established by such accomplished mathematicians
as Euclid, Cauchy, Coxeter, Dress were seemingly disproved after a while?
The answer is simple – all the results mentioned are completely valid; what
changed is the meaning in which the word “polyhedron” is used. As long
as different people interpret the concept in different ways there is always
the possibility that results true under one interpretation are false with other
understandings. As a matter of fact, even slight variations in the definitions
of concepts often entail significant changes in results.

In some ways the present situation concerning polyhedra is somewhat
analogous to the one that developed in ancient Greece after the discovery of
incommensurable quantities. Although many of the results in geometry were
not affected by the existence of such quantities, it was philosophically and
logically important to find a reasonable and effective approach for dealing
with them. In recent years, several papers dealing with more or less general
polyhedra appeared. However, the precise boundaries of the concept of poly-
hedra are mostly not explicitly stated, and even if explanations are given –
they appear rather arbitrary and tailored to the needs of the moment [12] or
else aimed at objects with great symmetry [40]. The main purpose of this
paper is to present an internally consistent and quite general approach, and
to illustrate its effectiveness by a number of examples.

In the detailed discussions presented in the following sections we shall
introduce various restrictions as appropriate to the classes of polyhedra con-
sidered. However, I believe that in order to develop any general theory of
polyhedra we should be looking for a definition that satisfies the following
(admittedly somewhat fuzzy) conditions.

(i) The generality should be restricted only for very good reasons, and not
arbitrarily or because of tradition. As an example, there is no justification
for the claim that for a satisfactory theory one needs to exclude polyhedra
that contain coplanar faces. (Thus, if we were to interpret the two regular
star-polyhedra found by Kepler as solids – the way they are usually shown –
each would be bounded by 60 congruent triangles. Since quintuplets of trian-
gles are coplanar, these “polyhedra” would be inadmissible.) In particular,
the definition should not be tailored to fit a special class of polyhedra (for
example, the regular ones, or the uniform polyhedra), in such a way that it
is more or less meaningless in less restricted situations (such as the absence
of high symmetry).

(ii) The combinatorial type should remain constant under continuous
changes of the polyhedron. This is in contrast to the situation concerning
the usual approach to convex polyhedra, where the combinatorial type is
easily seen to be discontinuous. The point is illustrated in Figure 1, where
the first three diagrams show pentagonal dodecahedra that are becoming
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• Es el primero que da una definición de poliedro y 
de poliedro regular;

• No dice que su numeración está completa



Un poliedro es una colección de 
polígonos (que llamamos caras) 
tal que: 
polígonos



polígonos

Un polígono es una colección discreta de puntos en el 
espacio,  llamados vértices, junto con segmentos de recta 
entre ellos, llamados aristas, tales que cada vértice está 
en exactamente dos aristas y el objeto es conexo.
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Un poliedro es una colección de 
polígonos (que llamamos caras) 
tal que: 

Dado un vértice v, su figura de vértice es la gráfica cuyos vértices 
son los puntos medios de las aristas en v y dos de ellos están 
conectados si las aristas correspondientes (y v) están en una 
misma cara.

• Cada arista está en 
exactamente dos caras

• Cada figura de vértice es un 
ciclo (conexo) 

• Conexo

polígonos



Algunos ejemplos de poliedros









Ya sabemos qué es un poliedro, pero…

¿un poliedro regular?

“se ve igual por todas partes”



Los sólidos Platónicos cumplen:
•Todas sus caras son polígonos regulares
•Todas sus caras son iguales
•Todas sus figuras de vértice son regulares (e 
iguales)

¿Es esto suficiente?

•Todas las simetrías de sus caras y figuras de 
vértice se extienden al poliedro.
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•Todas sus caras son polígonos regulares
•Todas sus caras son iguales
•Todas sus figuras de vértice son regulares (e 
iguales)

•Todas las simetrías de sus caras y figuras de 
vértice se extienden al poliedro.

Un poliedro es regular si:



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio



Teorema (Grünbaum-Dress)
Hay exactamente 18 poliedros regulares finitos en 
el espacio

¿Poliedros regulares infinitos?Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



Poliedros regulares infinitos



462 B. Grünbaum

lot of new regular polyhedra, and soon thereafter Dress proved [15], [16] that
one needs to add just one more polyhedron to make my list complete. Then,
about ten years ago I found [22] a whole slew of new regular polyhedra, and
so far nobody claimed to have found them all.

How come that results established by such accomplished mathematicians
as Euclid, Cauchy, Coxeter, Dress were seemingly disproved after a while?
The answer is simple – all the results mentioned are completely valid; what
changed is the meaning in which the word “polyhedron” is used. As long
as different people interpret the concept in different ways there is always
the possibility that results true under one interpretation are false with other
understandings. As a matter of fact, even slight variations in the definitions
of concepts often entail significant changes in results.

In some ways the present situation concerning polyhedra is somewhat
analogous to the one that developed in ancient Greece after the discovery of
incommensurable quantities. Although many of the results in geometry were
not affected by the existence of such quantities, it was philosophically and
logically important to find a reasonable and effective approach for dealing
with them. In recent years, several papers dealing with more or less general
polyhedra appeared. However, the precise boundaries of the concept of poly-
hedra are mostly not explicitly stated, and even if explanations are given –
they appear rather arbitrary and tailored to the needs of the moment [12] or
else aimed at objects with great symmetry [40]. The main purpose of this
paper is to present an internally consistent and quite general approach, and
to illustrate its effectiveness by a number of examples.

In the detailed discussions presented in the following sections we shall
introduce various restrictions as appropriate to the classes of polyhedra con-
sidered. However, I believe that in order to develop any general theory of
polyhedra we should be looking for a definition that satisfies the following
(admittedly somewhat fuzzy) conditions.

(i) The generality should be restricted only for very good reasons, and not
arbitrarily or because of tradition. As an example, there is no justification
for the claim that for a satisfactory theory one needs to exclude polyhedra
that contain coplanar faces. (Thus, if we were to interpret the two regular
star-polyhedra found by Kepler as solids – the way they are usually shown –
each would be bounded by 60 congruent triangles. Since quintuplets of trian-
gles are coplanar, these “polyhedra” would be inadmissible.) In particular,
the definition should not be tailored to fit a special class of polyhedra (for
example, the regular ones, or the uniform polyhedra), in such a way that it
is more or less meaningless in less restricted situations (such as the absence
of high symmetry).

(ii) The combinatorial type should remain constant under continuous
changes of the polyhedron. This is in contrast to the situation concerning
the usual approach to convex polyhedra, where the combinatorial type is
easily seen to be discontinuous. The point is illustrated in Figure 1, where
the first three diagrams show pentagonal dodecahedra that are becoming
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Teorema (A. Dress 1984)
Existen 48 poliedros regulares en el espacio 
euclidiano tridimensional
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lot of new regular polyhedra, and soon thereafter Dress proved [15], [16] that
one needs to add just one more polyhedron to make my list complete. Then,
about ten years ago I found [22] a whole slew of new regular polyhedra, and
so far nobody claimed to have found them all.

How come that results established by such accomplished mathematicians
as Euclid, Cauchy, Coxeter, Dress were seemingly disproved after a while?
The answer is simple – all the results mentioned are completely valid; what
changed is the meaning in which the word “polyhedron” is used. As long
as different people interpret the concept in different ways there is always
the possibility that results true under one interpretation are false with other
understandings. As a matter of fact, even slight variations in the definitions
of concepts often entail significant changes in results.

In some ways the present situation concerning polyhedra is somewhat
analogous to the one that developed in ancient Greece after the discovery of
incommensurable quantities. Although many of the results in geometry were
not affected by the existence of such quantities, it was philosophically and
logically important to find a reasonable and effective approach for dealing
with them. In recent years, several papers dealing with more or less general
polyhedra appeared. However, the precise boundaries of the concept of poly-
hedra are mostly not explicitly stated, and even if explanations are given –
they appear rather arbitrary and tailored to the needs of the moment [12] or
else aimed at objects with great symmetry [40]. The main purpose of this
paper is to present an internally consistent and quite general approach, and
to illustrate its effectiveness by a number of examples.

In the detailed discussions presented in the following sections we shall
introduce various restrictions as appropriate to the classes of polyhedra con-
sidered. However, I believe that in order to develop any general theory of
polyhedra we should be looking for a definition that satisfies the following
(admittedly somewhat fuzzy) conditions.

(i) The generality should be restricted only for very good reasons, and not
arbitrarily or because of tradition. As an example, there is no justification
for the claim that for a satisfactory theory one needs to exclude polyhedra
that contain coplanar faces. (Thus, if we were to interpret the two regular
star-polyhedra found by Kepler as solids – the way they are usually shown –
each would be bounded by 60 congruent triangles. Since quintuplets of trian-
gles are coplanar, these “polyhedra” would be inadmissible.) In particular,
the definition should not be tailored to fit a special class of polyhedra (for
example, the regular ones, or the uniform polyhedra), in such a way that it
is more or less meaningless in less restricted situations (such as the absence
of high symmetry).

(ii) The combinatorial type should remain constant under continuous
changes of the polyhedron. This is in contrast to the situation concerning
the usual approach to convex polyhedra, where the combinatorial type is
easily seen to be discontinuous. The point is illustrated in Figure 1, where
the first three diagrams show pentagonal dodecahedra that are becoming
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