Voltage operations on Maniplexes, maps and polytopes

> Antonio Montero Joint work with Isabel Hubard and Elías Mochan

> > University of Ljubljana

November 2022

A. Montero (FMF-UL)

Voltage operations

Nov. 2022

1/24

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 2/24

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 2/24

A. Montero (FMF-UL)

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 2/24

A. Montero (FMF-UL)

A. Montero (FMF-UL)

A. Montero (FMF-UL)

A. Montero (FMF-UL)

A. Montero (FMF-UL)

* Connected simple graph.

Connected simple graph.
n - valent

Connected simple graph.
n - valent
n - properly edge

coloured.

- * Connected simple graph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares

An n - Maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

Voltage operations

5/24

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

An n - maniplex is:
Connected simple graph.
n - valent
n - properly edge coloured.
If |i - j| > 1, then the (i, j)-factors are alternating squares

(Hubard, Garza-Vargas;
 2017): Maniplexes that
 are strongly path
 connected are abstract
 polytopes

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.
- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.

6/24

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.

- (Hubard, Garza-Vargas;
 2017): Maniplexes that are strongly path connected are abstract polytopes
- * The *i*-faces of a maniplex \mathcal{M} are the connected components of $\mathcal{M} - i$.
- Two faces are incidents if they have nonempty intersection.

An n - Maniplex is: * Connected simple graph. * n - valent * n - properly edge

- coloured.
- * |f|(i-j)| > 1, then the (i,j)-factors are alternating squares

- * Connected simple Graph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares every (i, j, i, j)-path is closed

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares every (i, j, i, j)-path is closed

An n - premaniplex is:

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares every (i, j, i, j)-path is closed

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 7/24

An n - premaniplex is:

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares every (i, j, i, j)-path is closed

A. Montero (FMF-UL)

- * Connected simple pregraph.
- * n valent
- * n properly edge coloured.
- * If |i j| > 1, then the (i, j)-factors are alternating squares every (i, j, i, j)-path is closed

Symmetries

* An automorphism of a (pre)maniplex *M* is a colour-preserving graph automorphism.

Symmetries

* An automorphism of a (pre)maniplex *M* is a colour-preserving graph automorphism.

* The group $Aut(\mathcal{M})$ acts freely on the flags of \mathcal{M} (provided that \mathcal{M} is connected).

Symmetries

* An automorphism of a (pre)maniplex *M* is a colour-preserving graph automorphism.

* The group $\operatorname{Aut}(\mathcal{M})$ acts freely on the flags of \mathcal{M} (provided that \mathcal{M} is connected).

* If $\Gamma \leq \operatorname{Aut}(\mathcal{M})$, then the symmetry type graph of \mathcal{M} (with respect to Γ) is the connected premaniplex \mathcal{M}/Γ .

Voltage operations

Voltage operations

Voltage operations

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* k = 1 Regular (reflexible) polytopes.

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* k = 1 Regular (reflexible) polytopes. * k = 2: there are $2^n - 1$ connected premaniplexes.

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* k = 1 Regular (reflexible) polytopes. * k = 2: there are $2^n - 1$ connected premaniplexes. - [Pellicer; 2010]: Quiral *n*-polytopes exist for arbitrary *n*.

10/24

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* k = 1 Regular (reflexible) polytopes.

* k = 2: there are $2^n - 1$ connected premaniplexes.

- [Pellicer; 2010]: Quiral n-polytopes exist for arbitrary n.
- [Pellicer, Potočnik, Toledo; 2019]: A construction of a *n*-maniplex with any given STG with 2 vertices.

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* k = 1 Regular (reflexible) polytopes.

* k = 2: there are $2^n - 1$ connected premaniplexes.

- [Pellicer; 2010]: Quiral n-polytopes exist for arbitrary n.
- [Pellicer, Potočnik, Toledo; 2019]: A construction of a *n*-maniplex with any given STG with 2 vertices.
- [Mochán, 2022+]: Some of them are polytopes.

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

***** k≥3

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* $k \ge 3$

- [Cunningham, Del Río-Francos, Hubard, Toledo; 2010]: Classification of premaniplexes with 3 and 4 vertices

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* $k \ge 3$

- [Cunningham, Del Río-Francos, Hubard, Toledo; 2010]: Classification of premaniplexes with 3 and 4 vertices
- [Hubard, Mochán; 2022]: 3-polytopes with STG with 3 vertices.

is every connected *n*-premaniplex (with *k* vertices) the symmetry type Graph of an *n*-maniplex (*n*-polytope)?

* $k \ge 3$

- [Cunningham, Del Río-Francos, Hubard, Toledo; 2010]: Classification of premaniplexes with 3 and 4 vertices
- [Hubard, Mochán; 2022]: 3-polytopes with STG with 3 vertices.

- [Mochán, 2022+]: Maniplexes with caterpillars as STG.

The group

 $W_n = \langle r_0, \dots, r_{n-1} : r_i^2 = (r_i r_j)^2 = 1 \text{ if } |i-j| > 1 \rangle$

The group

 $W_n = \left\langle r_0, \ldots, r_{n-1} : r_i^2 = \overline{(r_i r_j)^2} = 1$ if |i - j| > 1
ight
angle

acts on every (pre)maniplex by

A. Montero (FMF-UL)

Voltage operations

Nov. 2022

1/24

The group

 $W_n = \langle r_0, \dots, r_{n-1} : r_i^2 = \overline{(r_i r_j)^2} = 1$ if $|i - j| > 1 \rangle$

acts on every (pre)maniplex by

Voltage operations

1/24

The group

 $W_n = \langle r_0, \dots, r_{n-1} : r_i^2 = (r_i r_j)^2 = 1 \text{ if } |i-j| > 1 \rangle$

acts on every (pre)maniplex by

Voltage operations
A good action

* Two paths $w_1 x$ and $w_2 x$ are homotopic if $w_1 = w_2$ in W_n .

A good action

* Two paths $w_1 x$ and $w_2 x$ are homotopic if $w_1 = w_2$ in W_n .

* The universal *n*-maniplex (polytope) \mathcal{U}^n is $Cay(W_n)$

A good action

* Two paths $w_1 x$ and $w_2 x$ are homotopic if $w_1 = w_2$ in W_n .

* The universal *n*-maniplex (polytope) \mathcal{U}^n is $Cay(W_n)$

* The maniplex \mathcal{U}^n is regular and every other (connected) *n*-premaniplex is a quotient of \mathcal{U}^n by a group $\Gamma \leq \operatorname{Aut}(\mathcal{U})$.

A. Montero (FMF-UL)

 (\mathcal{Y},η)

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 14/24

 (\mathcal{Y},η)

Voltage operations

Nov. 2022 14/24

 \mathcal{X} (\mathcal{Y},η)

 $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 14/24

 $V(\mathcal{X} \rtimes_{\eta} \mathcal{Y}) = V(\mathcal{X}) \times V(\mathcal{Y})$

 $egin{aligned} \mathcal{X} & & (\mathcal{Y},\eta) & & \mathcal{X}
times_\eta \mathcal{Y} \ & & V(\mathcal{X}
times_\eta \mathcal{Y}) = V(\mathcal{X}) imes V(\mathcal{Y}) \ & & r_i(x,y) = (\eta(^iy)x,r_iy) \end{aligned}$

 $egin{aligned} \mathcal{X} & & (\mathcal{Y},\eta) & & \mathcal{X}
times_\eta \mathcal{Y} \ & & V(\mathcal{X}
times_\eta \mathcal{Y}) = V(\mathcal{X}) imes V(\mathcal{Y}) \ & & r_i(x,y) = (\eta(^iy)x,r_iy) \end{aligned}$

Voltage operations

14/24

 $egin{aligned} \mathcal{X} & & (\mathcal{Y},\eta) & & \mathcal{X}
times_\eta \mathcal{Y} \ & & V(\mathcal{X}
times_\eta \mathcal{Y}) = V(\mathcal{X}) imes V(\mathcal{Y}) \ & & r_i(x,y) = (\eta(^iy)x,r_iy) \end{aligned}$

 $egin{aligned} \mathcal{X} & & (\mathcal{Y},\eta) & & \mathcal{X}
times_\eta \mathcal{Y} \ & & V(\mathcal{X}
times_\eta \mathcal{Y}) = V(\mathcal{X}) imes V(\mathcal{Y}) \ & & r_i(x,y) = (\eta(^iy)x,r_iy) \end{aligned}$

Voltage operations

14/24

 $egin{aligned} \mathcal{X} & (\mathcal{Y},\eta) & \mathcal{X}
times_\eta \mathcal{Y} \ & V(\mathcal{X}
times_\eta \mathcal{Y}) = V(\mathcal{X}) imes V(\mathcal{Y}) \ & r_i(x,y) = (\eta(^iy)x,r_iy) \end{aligned}$

Voltage operations

14/24

Theorem Let \mathcal{X} be a *n*-premaniplex and \mathcal{Y} an *m*-premaniplex with a voltage assignment $\eta : \mathcal{Y} \to W_n$.

Theorem

Let \mathcal{X} be a *n*-premaniplex and \mathcal{Y} an *m*-premaniplex with a voltage assignment $\eta: \mathcal{Y} \to W_n$. The *m*-coloured graph $\mathcal{X} \rtimes_\eta \mathcal{Y}$ is a premaniplex if $\eta(W) = 1$ for every (i, j, i, j)-path W of \mathcal{Y} with |i - j| > 1.

Theorem

Let \mathcal{X} be a *n*-premaniplex and \mathcal{Y} an *m*-premaniplex with a voltage assignment $\eta: \mathcal{Y} \to W_n$. The *m*-coloured graph $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ is a premaniplex if $\eta(W) = 1$ for every (i, j, i, j)-path W of \mathcal{Y} with |i-j| > 1. $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ is connected if $\eta(\Pi^{y}(\mathcal{Y})) = W_n$ for some $y \in \mathcal{Y}$.

A. Montero (FMF-UL)

Voltage operations Prisms and pyramids

A. Montero (FMF-UL)

Voltage operations

Nov. 2022

11/24

A. Montero (FMF-UL)

Voltage operations

18/24

If \mathcal{Y} is a premaniplex, we denote by $\mu_{\mathcal{Y}}$ the voltage assignment that gives the voltage r_i to each dart of colour i.

If \mathcal{Y} is a premaniplex, we denote by $\mu_{\mathcal{Y}}$ the voltage assignment that gives the voltage r_i to each dart of colour i.

Proposition

The map $(x, y) \mapsto (y, x)$ is an isomorphism between $\mathcal{X} \rtimes_{\eta_1} \mathcal{Y}$ and $\mathcal{Y} \rtimes_{\eta_2} \mathcal{X}$ if and only if $\eta_1 = \mu_{\mathcal{Y}}$ and $\eta_2 = \mu_{\mathcal{X}}$.

If $\mathcal Y$ is a premaniplex, we denote by $\mu_{\mathcal Y}$ the voltage assignment that gives the voltage r_i to each dart of colour i.

Proposition

The map $(x, y) \mapsto (y, x)$ is an isomorphism between $\mathcal{X} \rtimes_{\eta_1} \mathcal{Y}$ and $\mathcal{Y} \rtimes_{\eta_2} \mathcal{X}$ if and only if $\eta_1 = \mu_{\mathcal{Y}}$ and $\eta_2 = \mu_{\mathcal{X}}$.

Theorem

The premaniplex $\mathcal{X} \rtimes_{\mu_{\mathcal{Y}}} \mathcal{Y}$ is the smallest premaniplex that covers both \mathcal{X} and \mathcal{Y} .

If \mathcal{Y} is a premaniplex, we denote by $\mu_{\mathcal{Y}}$ the voltage assignment that gives the voltage r_i to each dart of colour i.

Proposition

The map $(x, y) \mapsto (y, x)$ is an isomorphism between $\mathcal{X} \rtimes_{\eta_1} \mathcal{Y}$ and $\mathcal{Y} \rtimes_{\eta_2} \mathcal{X}$ if and only if $\eta_1 = \mu_{\mathcal{Y}}$ and $\eta_2 = \mu_{\mathcal{X}}$.

Theorem

The premaniplex $\mathcal{X} \rtimes_{\mu_{\mathcal{Y}}} \mathcal{Y}$ is the smallest premaniplex that covers both \mathcal{X} and \mathcal{Y} .

Theorem

If (\mathcal{Y}_1, η_1) is an (n, m)-voltage operator, and (\mathcal{Y}_2, η_2) is a (m, ℓ) -voltage operator, then there exists a voltage $\theta : \mathcal{Y}_1 \rtimes_{\eta_2} \mathcal{Y}_2 \to W_n$ such that

 $(\mathcal{X}\rtimes_{\eta_1}\mathcal{Y}_1)\rtimes_{\eta_2}\mathcal{Y}_2$

Theorem

If (\mathcal{Y}_1, η_1) is an (n, m)-voltage operator, and (\mathcal{Y}_2, η_2) is a (m, ℓ) -voltage operator, then there exists a voltage $\theta : \mathcal{Y}_1 \rtimes_{\eta_2} \mathcal{Y}_2 \to W_n$ such that

 $(\mathcal{X} \rtimes_{\eta_1} \mathcal{Y}_1) \rtimes_{\eta_2} \mathcal{Y}_2 \cong \mathcal{X} \rtimes_{ heta} (\mathcal{Y}_1 \rtimes_{\eta_2} \mathcal{Y}_2)$

Theorem

If (\mathcal{Y}_1, η_1) is an (n, m)-voltage operator, and (\mathcal{Y}_2, η_2) is a (m, ℓ) -voltage operator, then there exists a voltage $\theta : \mathcal{Y}_1 \rtimes_{\eta_2} \mathcal{Y}_2 \to W_n$ such that

$$(\mathcal{X} \rtimes_{\eta_1} \mathcal{Y}_1) \rtimes_{\eta_2} \mathcal{Y}_2 \cong \mathcal{X} \rtimes_{ heta} (\mathcal{Y}_1 \rtimes_{\eta_2} \mathcal{Y}_2)$$

Corollary

If \mathcal{M} is a non-orientable maniplex, then $\operatorname{Snub}(\mathcal{M})$ is isomorphic to a connected component of $\operatorname{Snub}(MOC(\mathcal{M}))$.

A. Montero (FMF-UL)

Voltage operations

Theorem Every automorphism of \mathcal{X} induces an automorphism of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

Theorem Every automorphism of $\mathcal X$ induces an automorphism of $\mathcal X\rtimes_\eta\mathcal Y$.

Voltage operations Automorphisms

Theorem Every automorphism of \mathcal{X} induces an automorphism of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

Theorem If \mathcal{X} covers \mathcal{Z} , then $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ covers $\mathcal{Z} \rtimes_{\eta} \mathcal{Y}$.

Voltage operations Automorphisms

Theorem Every automorphism of \mathcal{X} induces an automorphism of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

Theorem If \mathcal{X} covers \mathcal{Z} , then $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ covers $\mathcal{Z} \rtimes_{\eta} \mathcal{Y}$.

Theorem If $\mathcal{X}/\Gamma = \mathcal{Z}$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $(\mathcal{X} \rtimes \mathcal{Y})/\Gamma = \mathcal{Z} \rtimes \mathcal{Y}$.

A. Montero (FMF-UL)

Voltage operations

Nov. 2022

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

Theorem

If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

Theorem

Assume that O is a mapping that assigns a premaniplex $O(\mathcal{X})$ to each premaniplex \mathcal{X} , then O is a voltage operation if and only if

Theorem

If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

Theorem

Assume that O is a mapping that assigns a premaniplex $O(\mathcal{X})$ to each premaniplex \mathcal{X} , then O is a voltage operation if and only if

* $\operatorname{Aut}(\mathcal{U})$ acts by automorphisms on $\mathcal{O}(\mathcal{U})$ and

Theorem

If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

Theorem

Assume that O is a mapping that assigns a premaniplex $O(\mathcal{X})$ to each premaniplex \mathcal{X} , then O is a voltage operation if and only if

* $\operatorname{Aut}(\mathcal{U})$ acts by automorphisms on $\mathcal{O}(\mathcal{U})$ and

* for every $\Gamma \leq \operatorname{Aut}(\mathcal{U})$,

$\mathcal{O}(\mathcal{U}/\Gamma) \cong \mathcal{O}(\mathcal{U})/\Gamma.$

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} .

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} . * In this case, the STG of $\mathcal{X} \rtimes_n \mathcal{Y}$ w.r.t. Γ is $\mathcal{Z} \rtimes \mathcal{Y}$.

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} . * In this case, the STG of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ w.r.t. Γ is $\mathcal{Z} \rtimes \mathcal{Y}$. * In particular, if \mathcal{X} is regular, then $\mathcal{Z} \rtimes \mathcal{Y} \cong \mathcal{Y}$.

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} . * In this case, the STG of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ w.r.t. Γ is $\mathcal{Z} \rtimes \mathcal{Y}$. * In particular, if \mathcal{X} is regular, then $\mathcal{Z} \rtimes \mathcal{Y} \cong \mathcal{Y}$. * ③

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} . * In this case, the STG of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ w.r.t. Γ is $\mathcal{Z} \rtimes \mathcal{Y}$. * In particular, if \mathcal{X} is regular, then $\mathcal{Z} \rtimes \mathcal{Y} \cong \mathcal{Y}$. * \odot

* There might be extra symmetry that is, $\Gamma \lneq \operatorname{Aut}(\mathcal{X} \rtimes \mathcal{Y})$

Theorem If $\mathcal{Z} = \mathcal{X}/\Gamma$ for $\Gamma \leq \operatorname{Aut}(\mathcal{X})$, then $\mathcal{Z} \rtimes \mathcal{Y} = (\mathcal{X} \rtimes \mathcal{Y})/\Gamma$.

* If $\Gamma = \operatorname{Aut}(\mathcal{X})$, then \mathcal{Z} is the symmetry type graph of \mathcal{X} . * In this case, the STG of $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ w.r.t. Γ is $\mathcal{Z} \rtimes \mathcal{Y}$. * In particular, if \mathcal{X} is regular, then $\mathcal{Z} \rtimes \mathcal{Y} \cong \mathcal{Y}$. * \odot * There might be extra symmetry that is, $\Gamma \lneq \operatorname{Aut}(\mathcal{X} \rtimes \mathcal{Y})$ * \odot

* Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

* Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

Voltage operations

- * Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.
- * Some symmetries of (\mathcal{Y}, η) sometimes lift to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

- * Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.
- * Some symmetries of (\mathcal{Y}, η) sometimes lift to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

- * Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.
- * Some symmetries of (\mathcal{Y}, η) sometimes lift to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

* If there is extra symmetry that does not come for \mathcal{X} or \mathcal{Y} and $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ is connected, .

A. Montero (FMF-UL)

Voltage operations

Nov. 2022 23/24

- * Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.
- * Some symmetries of (\mathcal{Y}, η) sometimes lift to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

* If there is extra symmetry that does not come for \mathcal{X} or \mathcal{Y} and $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ is connected, then there is a family $\{\mathcal{Z}_y : y \in \mathcal{Y}\}$ such that \mathcal{X} covers $\mathcal{Z}_y \odot$...

A. Montero (FMF-UL)

Voltage operations

- * Every symmetry of (\mathcal{Y}, η) lifts to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.
- * Some symmetries of (\mathcal{Y}, η) sometimes lift to $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$.

* If there is extra symmetry that does not come for \mathcal{X} or \mathcal{Y} and $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$ is connected, then there is a family $\{\mathcal{Z}_y : y \in \mathcal{Y}\}$ such that \mathcal{X} covers $\mathcal{Z}_y \odot_{\dots} \mathcal{Z}_y$ could be trivial <u>A Gentero (FMF-UL)</u> Voltage operations Nov. 2022 23/24

