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The idea...

Given an abstract n-polytope K... what are the possibilities

for an (n + 1)-polytope P with all the facets isomorphic to K.
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The idea...

Existence?
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The idea...

Finiteness?
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The idea...

Type?
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The idea...

Universality?
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The idea...

Symmetry?
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Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes
The not definition of...

* An abstract n-polytope

P is a poset that

generalises the

face-lattice of a

convex polytope.

* Facets.

* Flags.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 4/33



Abstract polytopes

* 0- and 1- polytopes are

boring...

* 2-polytopes are

combinatorial polygons.

* 3-polytopes are maps

* Flags are small triangles

* Φi shares all but the

i-face with Φ.
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Abstract polytopes
Type

* In a map, the faces are

polygons.

* Type {p, q}

- Faces p-gons,

- q around each vertex.

* Facets are

(n− 1)-polytopes.

* Type {p1, . . . , pn−1}:

- Facets of type

{p1, . . . , pn−2} ,

- pn−1 around each

(n− 3)-face.

* Type {K, pn−1}
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Quick warm up
* Q: Given K, is there a polytope P such that all the facets

are isomorphic to K

- Hint: Think in small rank.

- Answer: The extension of type {K, 2}
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Symmetries

* An automorphism of an n-polytope P is an

order-preserving bijection.

* We denote by Γ(P) the automorphism group of P .

* Γ(P) acts freely on flags.

* If this action is also transitive, we say that P is regular.
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New problem

* Facets of regular polytopes are regular.

* If K is a regular n-polytope, is there a regular
(n + 1)-polytope P with all the facets isomorphic to P?

- The trivial extension of K is regular if K is regular.

- The trivial extension is also very degenerate...

* If K is a n-polytope, does K admit a non-degenerate

regular extension?
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Symmetries of RP
If K is a regular n-polytope and Φ is a flag, there exist

automorphisms ρ0, . . . , ρn−1 such that

Φρi = Φi .
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Symmetries of RP

For P a regular n-polytope

* Γ(P) = 〈ρ0, . . . , ρn−1〉

* If P is of type {p1, . . . , pn−1},

ρ2
i = 1

(ρi ρj)
2 = 1 if |i − j | > 2,

(ρi−1ρi )
pi = 1

* Γ(P) satisfies an intersection property.
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Symmetries of RP

Theorem (Schulte, 82)

Given p1, . . . , pn−1 ∈ {2, . . . , ∞} a group Γ = 〈ρ0, . . . , ρn−1〉
satisfying

*

ρ2
i = 1

(ρi ρj)
2 = 1 if |i − j | > 2,

(ρi−1ρi )
pi = 1

* The intersection property.

There exists a regular n-polytope P(Γ) such that

* P(Γ) is of type {p1, . . . , pn−1}
* Γ(P(Γ)) = Γ
* The facets of P(Γ) are isomorphic to P (〈ρ0, . . . , ρn−2〉).
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Extension problem, with

groups

Given a regular n polytope K, with Γ(K) = 〈ρ0, . . . , ρn−1〉 and a

group Γ = 〈ρ̃0, . . . , ρ̃n〉
* ρ̃n is an involution,

* ρi 7→ ρ̃i , for i 6 n− 1 is an embedding,

* Γ satisfies the intersection property

The regular polytope P(Γ) is a regular extension of K of type

{K, q} where q = o(ρ̃n−1ρ̃n).
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Regular extensions

* (Schulte, 83): Universal extension. Type {K, ∞},
Γ(P) ∼= Γ(K) ∗Γ(F ) (Γ(F )× C2).

* (Schulte, 82-85): Extension by permutations of facets.

Type {K, 6}, Γ(P) ∼= Γ(K)× Sm+1

* (Danzer, 84): Generalised cubes 2K . type {K, 4},
Γ(2K) ∼= Cm

2 o Γ(K)
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Regular extensions

* (Pellicer, 2010): Extensions of dually bipartite polytopes.

Type {K, 2s}, ∀s > 3. Built using coset graphs

* (Pellicer, 2009): Extensions of regular polytopes with

prescribed type (2sK−1), Type {K, 2s}, ∀s > 2,
Γ(2sK−1) ∼= (C2 × Cm−1

s )o Γ(K)

* (Hartley, 2005): The n-hemicube cannot be extended

with an odd number.
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Other symmetries?

* Regular polytopes are the most symmetric.

* Degree of symmetry ←→ number of flag-orbits.

* What about 2-orbits?

* Chiral maps:
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Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry

but dot not admit reflections.

* Geometric chiral 4-polytopes were first studied by

Coxeter (Twisted Honeycombs, 1970)

* The geometric definition can be given in combinatorial

terms.
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Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2
flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)

Given a group Γ = ...

* ...some relations...

* ... some intersection property...

Then Γ is the automorphism group of a chiral polytope ...

... or the rotation group of a regular polytope.
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Chiral polytopes
Some history

* Chiral maps (chiral 3-polytopes): lots of examples.

- Infinitely many chiral toroidal maps.

- No chiral maps on orientable surfaces of genera 2, 3, 4, 5
or 6.

- Infinitely many surfaces admitting chiral maps.

* Rank 4:
- First examples by Coxeter in the 70’s

- (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss,

Monson-Schulte ... 90’s): Examples arising as finite

quotients of hyperbolic honeycombs.

- No chiral 4-polytopes from Euclidean honeycombs.

- (McMullen-Schulte, 96): No chiral n-polytopes from

Euclidean tilings (n > 4).
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Chiral polytopes
Some history

* Rank 5:

- (Schulte-Weiss, 95): First example of a chiral 5-polytope

(very infinite)

- (Conder-Hubard-Pisanski, 2008): First finite example of a

chiral 5-polytope.

* (Pellicer, 2010): Chiral polytopes exists in arbitrary rank.

* (Cunningham, 2017): Chiral n-polytopes cannot be small if

n is large enough.
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The extension problem

Given a polytope K, does K admit a extension P?

Proposition

Let P be a chiral n-polytope:

* All the facets of P are isomorphic.

* All the facets of P are either orientably regular or chiral

but all the (n− 2)-faces are regular.
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Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q
- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}

- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q
- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q
- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q
- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q

- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

* (Schulte-Weiss, 95): Every chiral polytope K with regular
facets admits a universal chiral extension

- Type {K, ∞}
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope
K with regular facets admits a finite chiral extension

- Type {K, q} for some even number q
- Permutation group (coset graphs).

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 22/33



Chiral extensions of chiral

polytopes

Theorem (M., 2021 +)

* If K is a finite dually bipartite chiral polytope with regular

facets, there are infinitely many numbers s such that K
has a chiral extension of type {K, 2s}.

* If K is a chiral polytope with regular facets and a

non-degenerate regular quotient, there are infinitely

many numbers s such that K has a chiral extension of type

{K, 2s}.
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Chiral extensions of chiral

polytopes

Given an orientably regular polytope K, does K admit a chiral

extension?

* (Cunningham, 2017): If K is (1, n− 1)-flat, then K does not

admit a chiral extension.

* (Conder - Hubard - Pellicer - O’Reilly, 2018 *): The

n-simplex admits infinitely many chiral extensions with

symmetric or alternating groups as automorphisms

* (M.-Pellicer-Toledo, 2021 +): If n is even, almost every

regular n-toroid admits a chiral extension.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 24/33



Chiral extensions of chiral

polytopes

Given an orientably regular polytope K, does K admit a chiral

extension?

* (Cunningham, 2017): If K is (1, n− 1)-flat, then K does not

admit a chiral extension.

* (Conder - Hubard - Pellicer - O’Reilly, 2018 *): The

n-simplex admits infinitely many chiral extensions with

symmetric or alternating groups as automorphisms

* (M.-Pellicer-Toledo, 2021 +): If n is even, almost every

regular n-toroid admits a chiral extension.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 24/33



Chiral extensions of chiral

polytopes

Given an orientably regular polytope K, does K admit a chiral

extension?

* (Cunningham, 2017): If K is (1, n− 1)-flat, then K does not

admit a chiral extension.

* (Conder - Hubard - Pellicer - O’Reilly, 2018 *): The

n-simplex admits infinitely many chiral extensions with

symmetric or alternating groups as automorphisms

* (M.-Pellicer-Toledo, 2021 +): If n is even, almost every

regular n-toroid admits a chiral extension.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 24/33



Chiral extensions of chiral

polytopes

Given an orientably regular polytope K, does K admit a chiral

extension?

* (Cunningham, 2017): If K is (1, n− 1)-flat, then K does not

admit a chiral extension.

* (Conder - Hubard - Pellicer - O’Reilly, 2018 *): The

n-simplex admits infinitely many chiral extensions with

symmetric or alternating groups as automorphisms

* (M.-Pellicer-Toledo, 2021 +): If n is even, almost every

regular n-toroid admits a chiral extension.

A. Montero (IM UNAM (Mexico)) Extensions AGTIW 24/33



Chiral extensions
Open problems

* Does every chiral polytope (w.r.f) K admits a chiral

extension with prescribed type?

* Does every (any) regular polytope admits universal chiral

extension?

* Does every regular non-degenerate polytope admits a

chiral extension (with prescribed type)?
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2-orbit polytopes

* For every proper subset I ⊆ {0, . . . , n− 1} there exists a

class of 2-orbit polytopes: the class 2I .

* Chirality = 2∅ .

* (Hubard-Schulte, somewhere in the future): A

characterisation theorem for the automorphism group

of polytopes in class 2I .

* (Pellicer-Potocnik-Toledo, 2019): Two-orbit maniplexes in

class 2I exists for every n and every I .

* (Mochán, 2021 +): Some of those maniplexes are in fact

polytopes.
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2-orbit extensions

* The n-polytopes in class 2I are facet transitive if

I 6= {0, . . . , n− 2}.

* The facets of polytopes in class 2I are regular or in class

2I\{n−1} .

* The extension problem makes sense and has two

possibilities.
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Alternating 2-orbit
* The polytopes in class 2{0,...,n−2} are not facet-transitive.

* They have regular facets, of 2 different kinds.

* There are 2k facets around every (n− 3)-face, k of each

kind in an alternating way.

* We say that such polytopes have type
{P
Q, k

}

Figure:
{4

3, 2
}
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Alternating 2-orbit

Given P and Q regular and compatible polytopes (and k) is

there an alternating 2-orbit polytope of type
{P
Q, k

}
?

* (Schulte-Monson, 2012) Characterise the automorphism

groups of the alternating polytopes.

* (Schulte-Monson, 2019, 2020) Two universal
constructions:

- UP ,Q : Universal alternating of type
{P
Q, ∞

}
- Uk

P ,Q : Universal alternating of type
{P
Q, k

}
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Alternating 2-orbit

* There are examples of (P ,Q, k) such that not only U k
P ,Q

does not exists but that there is no alternating polytope

of type
{P
Q, k

}
.

* Conjecture: Given P and Q, there are infinitely many k
such that U k

P ,Q exists.

* Conjecture: There are infinitely many k for which there

exist P and Q such that U k
P ,Q does not exist.

* Problem Characterise the triplets (P ,Q, k) for which

there exists a finite alternating polytope of type
{P
Q, k

}
.
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k-orbit
Very little is known for k-orbit polytopes with k > 3.

* (Cunningham-Pellicer, 2018): A list with more than 30
problems on k-orbit polytopes.

* (Hubard - Mochán, 2021 +): Generators, relations and

intersection properties for automorphism groups of

k-orbit polytopes.

* Some techniques used for regular polytopes apply to a

more general class (notably 2K and related constructions).

* Problem: Given a regular polytope K, is there a k-orbit

extension of K.

* Problem: Given a k-orbit polytope K, is there a universal

k-orbit extension of K.
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Other interesting

problems

There are some other related problems which I did not talked

about (sorry!)

* Amalgamations

* Hypertopes

* Small extensions.
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Thanks!
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