Hichly symmetric polytopes with prescriBed local combinatorics

Antonio Montero
National Autonomous University of Mexico
Algebraic Graph Theory International WebMinar March 2O21

First, a Caley Graph...

First, a Caley Graph...

The idea...

The idea...

The idea...

The idea...

The idea...

The idea...

The idea...

Given an abstract n-polytope $\mathcal{K} .$.

The idea...

Given an abstract n-polytope $\mathcal{K} . .$. what are the possibilities for an $(n+1)$-polytope \mathcal{P} with all the facets isomorphic to \mathcal{K}.

The idea...

Existence?

The idea...

Finiteness?

The idea...

Type?

The idea...

Universality?

The idea...

Symmetry?

Abstract polytopes

 The not definition of...
Abstract polytopes

 The not definition of...* An abstract n-polytope
\mathcal{P} is a poset that
Generalises the
face-lattice of a
convex polytope.

Abstract polytopes

 The not definition of...* An abstract n-polytope \mathcal{P} is a poset that generalises the face-lattice of a convex polytope.

Abstract polytopes
The not definition of...

* An abstract n-polytope \mathcal{P} is a poses that Generalises the face-lattice of a convex polytope.
* Facets.

Abstract polytopes
The not definition of...

* An abstract n-polytope \mathcal{P} is a poset that Generalises the face-lattice of a convex polytope.
* Facets.

Abstract polytopes
The not definition of...

* An abstract n-polytope \mathcal{P} is a poset that Generalises the face-lattice of a convex polytope.
* Facets.
* Flacs.

Abstract polytopes
The not definition of...

* An abstract n-polytope \mathcal{P} is a pose that Generalises the face-lattice of a convex polytope.
* Facets.
* Flags.

Abstract polytopes

Abstract polytopes

* 0- and 1-polytopes are Boring...

Abstract polytopes

* 0- and 1-polytopes are Boring...

Abstract polytopes

* 0- and 1-polytopes are Boring...

Abstract polytopes

* 0- and 1- polytopes are Boring...
* 2-polytopes are combinatorial polygons.

Abstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are combinatorial polygons.

Abstract polytopes

* 0- and 1- polytopes are Boring...
* 2-polytopes are combinatorial polygons.

ABstract polytopes

* 0- and 1- polytopes are Boring...
* 2-polytopes are comsinatorial polygons.
* 3-polytopes are maps

ABstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are comsinatorial polygons.
* 3-polytopes are maps
* Flags are small triancles

Abstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are combinatorial polygons.
* 3-polytopes are maps
* Flags are small triangles

Abstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are combinatorial polygons.
* 3-polytopes are maps
* Flags are small triangles
* Φ^{i} shares all But the i-face with Φ.

Abstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are combinatorial polygons.
* 3-polytopes are maps
* Flags are small triangles
* Φ^{i} shares all But the i-face with Φ.

Abstract polytopes

* 0- and 1-polytopes are Boring...
* 2-polytopes are combinatorial polygons.
* 3-polytopes are maps
* Flags are small triangles
* Φ^{i} shares all But the i-face with Φ.

Abstract polytopes

Type

* In a map, the faces are polycons.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-gons,

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-gons,
- q around each vertex

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-gons,
- q around each vertex

Abstract polytopes

Type

* In a map, the faces are polycons.
* Type $\{p, q\}$
- Faces p-cons,
- q around each vertex.

Abstract polytopes
 Type

* In a map, the faces are polycons.
* Type $\{p, q\}$
- Faces p-GOns,
- q around each vertex

* Facets are ($n-1$)-polytopes.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-cons,
- q around each vertex
* Facets are ($n-1$)-polytopes.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-cons,
- q around each vertex
* Facets are ($n-1$)-polytopes.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-cons,
- q around each vertex
* Facets are ($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are ($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are
($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,
- p_{n-1} around each
 ($n-3$)-face.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are
($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,
- p_{n-1} around each
 ($n-3$)-face.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are
($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,
- p_{n-1} around each
 ($n-3$)-face.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are
($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,
- p_{n-1} around each
 ($n-3$)-face.

Abstract polytopes
Type

* In a map, the faces are polygons.
* Type $\{p, q\}$
- Faces p-Gons,
- q around each vertex
* Facets are
($n-1$)-polytopes.
* Type $\left\{p_{1}, \ldots, p_{n-1}\right\}$:
- Facets of type $\left\{p_{1}, \ldots, p_{n-2}\right\}$,
- p_{n-1} around each
 $(n-3)$-face.
* Type $\left\{\mathcal{K}, p_{n-1}\right\}$

Quick warm up

* Q : Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}

Quick warm up

* Q : Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.

Quick warm up

* Q : Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Quick warm up

* Q : Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Quick warm up

* Q : Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Quick warm up

* Q: Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Quick warm up

* Q: Given \mathcal{K}, is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}
- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Symmetries

* An automorphism of an n-polytope \mathcal{P} is an order-preservina Bijection

Symmetries

* An automorphism of an n-polytope \mathcal{P} is an order-preservina Bijection
* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P}.

Symmetries

* An automorphism of an n-polytope \mathcal{P} is an order-preservina Bijection.
* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P}.
* $\Gamma(\mathcal{P})$ acts freely on flacs.

Symmetries

* An automorphism of an n-polytope \mathcal{P} is an order-preservina Bijection
* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P}.
* $\Gamma(\mathcal{P})$ acts freely on flacs.
* If this action is also transitive, we say that \mathcal{P} is recular.

New problem

* Facets of regular polytopes are regular.

New problem

* Facets of regular polytopes are regular.
* If \mathcal{K} is a regular n-polytope, is there a recular
$(n+1)$-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?

New problem

* Facets of regular polytopes are regular.
* If \mathcal{K} is a regular n-polytope, is there a recular
$(n+1)$-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?
- The trivial extension of \mathcal{K} is regular if \mathcal{K} is regular.

New problem

* Facets of regular polytopes are regular.
* If \mathcal{K} is a regular n-polytope, is there a recular
$(n+1)$-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?
- The trivial extension of \mathcal{K} is recular if \mathcal{K} is regular.
- The trivial extension is also very degenerate...

New problem

* Facets of regular polytopes are regular.
* If \mathcal{K} is a regular n-polytope, is there a regular $(n+1)$-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?
- The trivial extension of \mathcal{K} is regular if \mathcal{K} is regular.
- The trivial extension is also very degenerate...
* If \mathcal{K} is a n-polytope, does \mathcal{K} admit a non-degenerate regular extension?

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP
If \mathcal{K} is a recular n-polytope and Φ is a flac, there exist automorphisms $\rho_{0}, \ldots, \rho_{n-1}$ such that

$$
\Phi \rho_{i}=\Phi^{i}
$$

Symmetries of RP

For \mathcal{P} a recular n-polytope * $\Gamma(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$

Symmetries of RP

For \mathcal{P} a recular n-polytope

* $\Gamma(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$
* If \mathcal{P} is of type $\left\{p_{1}, \ldots, p_{n-1}\right\}$,

$$
\begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2 \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

Symmetries of RP

For \mathcal{P} a recular n-polytope

* $\Gamma(\mathcal{P})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$
* If \mathcal{P} is of type $\left\{p_{1}, \ldots, p_{n-1}\right\}$,

$$
\begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2, \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

* $\Gamma(\mathcal{P})$ satisfies an intersection property.

Symmetries of
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a Group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

Symmetries of RP
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a $\operatorname{Group} \Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

$$
\text { * } \begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2, \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

Symmetries of
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a Group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

$$
\rho_{i}^{2}=1
$$

* $\quad\left(\rho_{i} \rho_{j}\right)^{2}=1$ if $|i-j| \geqslant 2$,

$$
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}}=1
$$

* The intersection property.

Symmetries of RP
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a Group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

$$
\text { * } \begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2, \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

* The intersection property.

There exists a regular n-polytope $\mathcal{P}(\Gamma)$ such that * $\mathcal{P}(\Gamma)$ is of type $\left\{p_{1}, \ldots, p_{n-1}\right\}$

Symmetries of RP
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a Group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

$$
\text { * } \begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2, \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

* The intersection property.

There exists a regular n-polytope $\mathcal{P}(\Gamma)$ such that

* $\mathcal{P}(\Gamma)$ is of type $\left\{p_{1}, \ldots, p_{n-1}\right\}$
* $\Gamma(\mathcal{P}(\Gamma))=\Gamma$

Symmetries of RP
Theorem (Schulte, 82)
Given $p_{1}, \ldots, p_{n-1} \in\{2, \ldots, \infty\}$ a Group $\Gamma=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ satisfying

$$
\text { * } \begin{aligned}
\rho_{i}^{2} & =1 \\
\left(\rho_{i} \rho_{j}\right)^{2} & =1 \quad \text { if }|i-j| \geqslant 2, \\
\left(\rho_{i-1} \rho_{i}\right)^{p_{i}} & =1
\end{aligned}
$$

* The intersection property.

There exists a regular n-polytope $\mathcal{P}(\Gamma)$ such that

* $\mathcal{P}(\Gamma)$ is of type $\left\{p_{1}, \ldots, p_{n-1}\right\}$
* $\Gamma(\mathcal{P}(\Gamma))=\Gamma$
* The facets of $\mathcal{P}(\Gamma)$ are isomorphic to $\mathcal{P}\left(\left\langle\rho_{0}, \ldots, \rho_{n-2}\right\rangle\right)$.

Extension problem, with

groups

Given a recular n polytope \mathcal{K}, with $\Gamma(\mathcal{K})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ and a Group $\Gamma=\left\langle\tilde{\rho}_{0}, \ldots, \tilde{\rho}_{n}\right\rangle$

* $\tilde{\rho}_{n}$ is an involution,

Extension problem, with
groups

Given a recular n polytope \mathcal{K}, with $\Gamma(\mathcal{K})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ and a Group $\Gamma=\left\langle\tilde{\rho}_{0}, \ldots, \tilde{\rho}_{n}\right\rangle$

* $\tilde{\rho}_{n}$ is an involution,
* $\rho_{i} \mapsto \tilde{\rho}_{i}$, for $i \leqslant n-1$ is an embedding,

Extension problem, with

groups

Given a regular n polytope \mathcal{K}, with $\Gamma(\mathcal{K})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ and a Group $\Gamma=\left\langle\tilde{\rho}_{0}, \ldots, \tilde{\rho}_{n}\right\rangle$

* $\tilde{\rho}_{n}$ is an involution,
* $\rho_{i} \mapsto \tilde{\rho}_{i}$, for $i \leqslant n-1$ is an embedding,
* Γ satisfies the intersection property

Extension problem, with
groups

Given a regular n polytope \mathcal{K}, with $\Gamma(\mathcal{K})=\left\langle\rho_{0}, \ldots, \rho_{n-1}\right\rangle$ and a Group $\Gamma=\left\langle\tilde{\rho}_{0}, \ldots, \tilde{\rho}_{n}\right\rangle$

* $\tilde{\rho}_{n}$ is an involution,
* $\rho_{i} \mapsto \tilde{\rho}_{i}$, for $i \leqslant n-1$ is an embedding,
* Γ satisfies the intersection property

The recular polytope $\mathcal{P}(\Gamma)$ is a recular extension of \mathcal{K} of type $\{\mathcal{K}, q\}$ where $q=o\left(\tilde{\rho}_{n-1} \tilde{\rho}_{n}\right)$.

Recular extensions

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})}\left(\Gamma(\mathcal{F}) \times \mathcal{C}_{2}\right)$.

Regular extensions

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})}\left(\Gamma(\mathcal{F}) \times \mathcal{C}_{2}\right)$.
* (Schulte, 82-85): Extension By permutations of facets. Type $\{\mathcal{K}, 6\}, \Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) \times S_{m+1}$

Regular extensions

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})}\left(\Gamma(\mathcal{F}) \times \mathcal{C}_{2}\right)$.
* (Schulte, 82-85): Extension By permutations of facets. Type $\{\mathcal{K}, 6\}, \Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) \times S_{m+1}$
* (Danzer, 84): Generalised cubes $2^{\mathcal{K}}$. type $\{\mathcal{K}, 4\}$, $\Gamma\left(2^{\mathcal{K}}\right) \cong C_{2}^{m} \rtimes \Gamma(\mathcal{K})$

Regular extensions

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2 s\}, \forall s \geqslant 3$. Built using coset craphs

Regular extensions

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2 s\}, \forall s \geqslant 3$. Built using coset araphs
* (Pellicer, 2009): Extensions of recular polytopes with prescriBed type $\left(2 s^{\mathcal{K}-1}\right)$, Type $\{\mathcal{K}, 2 s\}, \forall s \geqslant 2$, $\Gamma\left(2 s^{\mathcal{K}-1}\right) \cong\left(C_{2} \times C_{s}^{m-1}\right) \rtimes \Gamma(\mathcal{K})$

Regular extensions

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2 s\}, \forall s \geqslant 3$. Built using coset araphs
* (Pellicer, 2009): Extensions of regular polytopes with prescribed type $\left(2 s^{\mathcal{K}-1}\right.$), Type $\{\mathcal{K}, 2 s\}, \forall s \geqslant 2$, $\Gamma\left(2 s^{\mathcal{K}-1}\right) \cong\left(C_{2} \times C_{s}^{m-1}\right) \rtimes \Gamma(\mathcal{K})$
* (Hartley, 2005): The n-hemicube cannot be extended with an odd number.

Other symmetries?

Other symmetries?

* Regular polytopes are the most symmetric.

Other symmetries?

* Regular polytopes are the most symmetric.
* Degree of symmetry \longleftrightarrow number of flac-orbits.

Other symmetries?

* Regular polytopes are the most symmetric.
* Degree of symmetry \longleftrightarrow number of flac-orbits.
* What about 2-orbits?

Other symmetries?

* Recular polytopes are the most symmetric.
* Degree of symmetry \longleftrightarrow number of flag-orbits.
* What about 2-orbits?
* Chiral maps:

Other symmetries?

* Chiral (irreflexiBle) maps have full rotational symmetry But dot not adMit reflections.

Other symmetries?

* Chiral (irreflexiBle) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1970)

Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1910)
* The geometric definition can be given in combinatorial terms.

Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1910)
* The Geometric definition can be given in combinatorial terms.

Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1910)
* The Geometric definition can be given in combinatorial terms.

Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1910)
* The Geometric definition can be given in combinatorial terms.

Other symmetries?

* Chiral (irreflexible) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1910)
* The Geometric definition can be given in combinatorial terms.

Other symmetries?

* Chiral (irreflexiBle) maps have full rotational symmetry But dot not adMit reflections.
* Geometric chiral 4-polytopes were first studied By Coxeter (Twisted HoneycomBs, 1970)
* The geometric definition can be given in combinatorial terms.

Chiral polytopes

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)
Given a group $\Gamma=$...

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)
Given a Group $\Gamma=$...

* ...some relations...

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)
Given a Group $\Gamma=$...

* ...some relations...
* ... some intersection property...

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)
Given a Group $\Gamma=$...

* ...some relations...
* ... some intersection property...

Then Γ is the automorphism Group of a chiral polytope ...

Chiral polytopes

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91)
Given a Group $\Gamma=$...

* ...some relations...
* ... some intersection property...

Then Γ is the automorphism Group of a chiral polytope ...
... or the rotation Group of a regular polytope.

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.

Chiral polytopes

Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2,3,4,5 or 6.

Chiral polytopes

Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2,3,4,5 or 6.
- Infinitely many surfaces admitting chiral maps.

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientaBle surfaces of genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
* Rank 4:
- First examples by Coxeter in the 10's

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
* Rank 4:
- First examples by Coxeter in the 10's
- (Colsourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite quotients of hyperBolic honeycomBs.

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2,3,4,5 or 6.
- Infinitely many surfaces admitting chiral maps.
* Rank 4:
- First examples by Coxeter in the 10's
- (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite Quotients of hyperBolic honeycomBs.
- No chiral 4-polytopes from Eudidean honeycomBs.

Chiral polytopes Some history

* Chiral maps (chiral 3-polytopes): lots of examples.
- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2,3,4,5 or 6.
- Infinitely many surfaces admitting chiral maps.
* Rank 4:
- First examples by Coxeter in the 10's
- (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite Quotients of hyperBolic honeycomBs.
- No chiral 4-polytopes from Euclidean honeycomBs.
- (McMullen-Schulte, 96): No chiral n-polytopes from Euclidean tilinas ($n \geqslant 4$).

Chiral polytopes

 Some history* Rank 5:

Chiral polytopes

 Some history* Rank 5:
- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)

Chiral polytopes

 Some history* Rank 5:
- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.

Chiral polytopes Some history

* Rank 5:
- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.
* (Pellicer, 2010): Chiral polytopes exists in arBitrary rank.

Chiral polytopes
Some history

* Rank 5:
- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.
* (Pellicer, 2010): Chiral polytopes exists in arBitrary rank.
* (Cunningham, 2OIT): Chiral n-polytopes cannot be small if n is large enough.

The extension problem

Given a ___ polytope \mathcal{K}, does \mathcal{K} adMit a ___ extension \mathcal{P} ?

The extension problem

Given a __ polytope \mathcal{K}, does \mathcal{K} adMit a ___ extension \mathcal{P} ?

Proposition
Let \mathcal{P} Be a chiral n-polytope:

* All the facets of \mathcal{P} are isomorphic.

The extension problem

Given a ___ polytope \mathcal{K}, does \mathcal{K} admit a ___ extension \mathcal{P} ?

Proposition
Let \mathcal{P} Be a chiral n-polytope:

* All the facets of \mathcal{P} are isomorphic.
* All the facets of \mathcal{P} are either orientably recular or chiral But all the $(n-2)$-faces are recular.

Chiral extensions of chiral polytopes

* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with recular facets admits a universal chiral extension

Chiral extensions of chiral polytopes

* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets adMits a universal chiral extension
- Type $\{\mathcal{K}, \infty\}$

Chiral extensions of chiral

 polytopes* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets adMits a universal chiral extension
- Type $\{\mathcal{K}, \infty\}$
- Free products with amalgamation

Chiral extensions of chiral

 polytopes* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets admits a universal chiral extension
- Type $\{\mathcal{K}, \infty\}$
- Free products with amalcamation
* (Cunningham-Pellicer, 2O13): Every finite chiral polytope \mathcal{K} with reqular facets adMits a finite chiral extension

Chiral extensions of chiral

 polytopes* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets admits a universal chiral extension
- Type $\{\mathcal{K}, \infty\}$
- Free products with amalcamation
* (Cunningham-Pellicer, 2O13): Every finite chiral polytope \mathcal{K} with regular facets adMits a finite chiral extension
- Type $\{\mathcal{K}, q\}$ for some even number q

Chiral extensions of chiral

 polytopes* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets admits a universal chiral extension
- Type $\{\mathcal{K}, \infty\}$
- Free products with amalcamation
* (Cunningham-Pellicer, 2O13): Every finite chiral polytope \mathcal{K} with regular facets adMits a finite chiral extension
- Type $\{\mathcal{K}, q\}$ for some even number q
- Permutation group (coset graphs).

Chiral extensions of chiral

 polytopesTheorem (M. 2021^{+})

* If \mathcal{K} is a finite dually Bipartite chiral polytope with recular facets, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2 s\}$.

Chiral extensions of chiral

 polytopesTheorem (M. 2021^{+})

* If \mathcal{K} is a finite dually Bipartite chiral polytope with regular facets, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2 s\}$.
* If \mathcal{K} is a chiral polytope with regular facets and a non-degenerate regular quotient, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2 s\}$.

Chiral extensions of chiral polytopes

Given an orientably reqular polytope \mathcal{K}, does \mathcal{K} adMit a chiral extension?

Chiral extensions of chiral

polytopes

Given an orientably reqular polytope \mathcal{K}, does \mathcal{K} adMit a chiral extension?

* (Cunningham, 2OIT): If \mathcal{K} is $(1, n-1)$-flat, then \mathcal{K} does not admit a chiral extension

Chiral extensions of chiral

 polytopesGiven an orientably reqular polytope \mathcal{K}, does \mathcal{K} adMit a chiral extension?

* (Cunnincham, 2OIT): If \mathcal{K} is $(1, n-1)$-flat, then \mathcal{K} does not admit a chiral extension
* (Conder - HuBard - Pellicer - O'Reilly, 2018 *): The n-simplex admits infinitely many chiral extensions with symmetric or alternating Groups as automorphisms

Chiral extensions of chiral

 polytopesGiven an orientably reqular polytope \mathcal{K}, does \mathcal{K} adMit a chiral extension?

* (Cunningham, 2OIT): If \mathcal{K} is $(1, n-1)$-flat, then \mathcal{K} does not admit a chiral extension
* (Conder - HuBard - Pellicer - O'Reilly, 2018 *): The n-simplex admits infinitely many chiral extensions with symmetric or alternating Groups as automorphisms
* (M.-Pellicer-Toledo, $2 \mathrm{O} 21^{+}$): If n is even, almost every reqular n-toroid admits a chiral extension

Chiral extensions

Open problems

* Does every chiral polytope (w.r.f) \mathcal{K} adMits a chiral extension with prescriBed type?

Chiral extensions
 Open problems

* Does every chiral polytope (w.r.f) \mathcal{K} adMits a chiral extension with prescriBed type?
* Does every (any) regular polytope admits universal chiral extension?

Chiral extensions
 Open problems

* Does every chiral polytope (w.r.f) \mathcal{K} adMits a chiral extension with prescriBed type?
* Does every (any) regular polytope admits universal chiral extension?
* Does every regular non-degenerate polytope admits a chiral extension (with prescriBed type)?

2-orbit polytopes

2-orbit polytopes

* For every proper subset $I \subseteq\{0, \ldots, n-1\}$ there exists a class of 2-orBit polytopes: the class 2 .

2-orbit polytopes

* For every proper subset $I \subseteq\{0, \ldots, n-1\}$ there exists a class of 2-orBit polytopes: the class 2 .
* Chirality $=2 \varnothing$.

2-orbit polytopes

* For every proper subset $I \subseteq\{0, \ldots, n-1\}$ there exists a class of 2-orBit polytopes: the class 2 .
* Chirality $=2 \varnothing$.
* (Hubard-Schulte, somewhere in the future): A characterisation theorem for the automorphism Group of polytopes in class 2\%.

2-orbit polytopes

* For every proper subset $I \subseteq\{0, \ldots, n-1\}$ there exists a class of 2 -orBit polytopes: the class 2 .
* Chirality $=2 \varnothing$.
* (Hubard-Schulte, somewhere in the future): A characterisation theorem for the automorphism Group of polytopes in class 2/.
* (Pellicer-Potocnik-Toledo, 2019): Two-orBit maniplexes in class 2, exists for every n and every 1.

2-orbit polytopes

* For every proper subset $I \subseteq\{0, \ldots, n-1\}$ there exists a class of 2 -orBit polytopes: the class 2 .
* Chirality $=2 \varnothing$.
* (HuBard-Schulte, somewhere in the future): A characterisation theorem for the automorphism Group of polytopes in class 21 .
* (Pellicer-Potocnik-Toledo, 2019): Two-orBit maniplexes in class 2 , exists for every n and every 1 .
* (Mochán, $2 \mathrm{O} 21^{+}$): Some of those maniplexes are in fact polytopes.

2-orbit extensions

* The n-polytopes in class 2 , are facet transitive if $I \neq\{0, \ldots, n-2\}$.

2-orbit extensions

* The n-polytopes in class 2 , are facet transitive if $I \neq\{0, \ldots, n-2\}$.
* The facets of polytopes in class 2, are regular or in class $2^{\text {\ }\{n-1\}}$.

2-orbit extensions

* The n-polytopes in class 2 , are facet transitive if $I \neq\{0, \ldots, n-2\}$.
* The facets of polytopes in class 2, are regular or in class $2^{\text {\ }\{n-1\}}$.
* The extension problem makes sense and has two possibilities.

Alternating 2-orbit

* The polytopes in class $2_{\{0, \ldots, n-2\}}$ are not facet-transitive.

Alternating 2-orbit

* The polytopes in class $2_{\{0, \ldots, n-2\}}$ are not facet-transitive. * They have recular facets, of 2 different kinds.

Alternating 2-orbit

* The polytopes in class $2_{\{0, \ldots, n-2\}}$ are not facet-transitive.
* They have recular facets, of 2 different kinds.
* There are $2 k$ facets around every $(n-3)$-face, k of each kind in an alternating way.

Alternating 2-orbit

* The polytopes in class $2_{\{0, \ldots, n-2\}}$ are not facet-transitive.
* They have regular facets, of 2 different kinds.
* There are $2 k$ facets around every ($n-3$)-face, k of each kind in an alternating way.
* We say that such polytopes have type $\left\{\begin{array}{l}\mathcal{P}, k\} \\ Q\end{array}, k\right.$

Alternating 2-orbit

* The polytopes in class $2\{0, \ldots, n-2\}$ are not facet -transitive.
* They have regular facets, of 2 different kinds.
* There are $2 k$ facets around every ($n-3$)-face, k of each kind in an alternating way.
* We say that such polytopes have type $\left\{\begin{array}{l}\mathcal{p}, k \\ Q\end{array}, k\right\}$

Figure: $\left\{\begin{array}{l}4 \\ 3\end{array}, 2\right\}$

Alternating 2-orbit

Given \mathcal{P} and \mathcal{Q} recular and compatible polytopes (and k) is there an alternating 2-orBit polytope of type $\left\{\mathcal{P}_{\mathcal{Q}}, k\right\}$?

Alternating 2-orsit

Given \mathcal{P} and \mathcal{Q} recular and compatible polytopes (and k) is there an alternating 2-orBit polytope of type $\left\{\begin{array}{c}\mathcal{P}, k\}\end{array}\right.$

* (Schulte-Monson, 2O12) Characterise the automorphism Groups of the alternating polytopes.

Alternating 2-orsit

Given \mathcal{P} and \mathcal{Q} reGular and compatible polytopes (and k) is there an alternating 2-orsit polytope of type $\left\{\begin{array}{c}\mathcal{P}, k\} \text { ? }\end{array}\right.$

* (Schulte-Monson, 2O12) Characterise the automorphism Groups of the alternating polytopes.
* (Schulte-Monson, 2019, 2020) Two universal constructions:

Alternating 2-orsit

Given \mathcal{P} and \mathcal{Q} reGular and compatible polytopes (and k) is there an alternating 2 -orsit polytope of type $\left\{\begin{array}{c}\mathcal{P}, k\} \text { ? }\end{array}\right.$

* (Schulte-Monson, 2O12) Characterise the automorphism Groups of the alternating polytopes.
* (Schulte-Monson, 2019, 2020) Two universal constructions:
- $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}$: Universal alternating of type $\left\{\mathcal{P}_{\mathcal{Q}}^{\mathcal{P}}, \infty\right\}$

Alternating 2-orBit

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orsit polytope of type $\left\{\mathcal{P}_{\mathcal{Q}}, k\right\}$?

* (Schulte-Monson, 2O12) Characterise the automorphism Groups of the alternating polytopes.
* (Schulte-Monson, 2019, 2020) Two universal constructions:
- $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}$: Universal alternating of type $\left\{\begin{array}{c}\mathcal{P}, \infty\} \\ \mathcal{D}, \infty\end{array}\right.$
- U U \mathcal{P}, \mathcal{Q} : Universal alternating of type $\left\{\tilde{\mathcal{P}}_{\mathcal{Q}}, k\right\}$

Alternating 2-orbit

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exists But that there is no alternating polytope of type $\left\{\mathcal{P}_{\mathcal{Q}}, k\right\}$.

Alternating 2-orbit

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exists But that there is no alternating polytope of type $\left\{\mathcal{P}_{\mathcal{Q}}^{\mathcal{P}}, k\right\}$.
* Conjecture: Given \mathcal{P} and \mathcal{Q}, there are infinitely many k such that $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ exists.

Alternating 2-orbit

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exists But that there is no alternating polytope of type $\{\mathcal{P}, k\}$.
* Conjecture: Given \mathcal{P} and Q, there are infinitely many k such that $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ exists.
* Conjecture: There are infinitely many k for which there exist \mathcal{P} and \mathcal{Q} such that $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exist.

Alternating 2-orbit

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exists but that there is no alternating polytope of type $\left\{\mathcal{P}_{Q}, k\right\}$.
* Conjecture: Given \mathcal{P} and \mathcal{Q}, there are infinitely many k such that $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ exists.
* Conjecture: There are infinitely many k for which there exist \mathcal{P} and \mathcal{Q} such that $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^{k}$ does not exist.
* Problem Characterise the triplets $(\mathcal{P}, \mathcal{Q}, k)$ for which there exists a finite alternating polytope of type $\left\{\mathcal{Q}_{\mathcal{Q}}^{\mathcal{P}}, k\right\}$.
k-orbit
Very little is known for k-orBit polytopes with $k \geqslant 3$.

k-orBit

Very little is known for k-orsit polytopes with $k \geqslant 3$.

* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.

k-orBit

Very little is known for k-orsit polytopes with $k \geqslant 3$.

* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orsit polytopes.
* (Hubard - Mochán, $2 \mathrm{O} 21^{+}$): Generators, relations and intersection properties for automorphism Groups of k-orbit polytopes.

k-orBit

Very little is known for k-orsit polytopes with $k \geqslant 3$.

* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orsit polytopes.
* (Hubard - Mochán, $2 \mathrm{O} 21^{+}$): Generators, relations and intersection properties for automorphism Groups of k-orsit polytopes.
* Some techniques used for regular polytopes apply to a more General class (notably $2^{\mathcal{K}}$ and related constructions).
k-orbit
Very little is known for k-orBit polytopes with $k \geqslant 3$.
* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
* (Hubard - Mochán, $2 \mathrm{O} 21^{+}$): Generators, relations and intersection properties for automorphism Groups of k-o rit polytopes.
* Some techniques used for regular polytopes apply to a more General class (notably $2^{\mathcal{K}}$ and related constructions).
* Problem: Given a regular polytope \mathcal{K}, is there a k-orbit extension of \mathcal{K}.

$$
k \text {-orbit }
$$

Very little is known for k-orbit polytopes with $k \geqslant 3$.

* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
* (HuBard - Mochán, 2021^{+}): Generators, relations and intersection properties for automorphism Groups of k-orbit polytopes.
* Some techniques used for regular polytopes apply to a more General class (notably $2^{\mathcal{K}}$ and related constructions).
* Problem: Given a reGular polytope \mathcal{K}, is there a k-orbit extension of \mathcal{K}.
* Problem: Given a k-orBit polytope \mathcal{K}, is there a universal k-orbit extension of \mathcal{K}.

Other interesting

problems

There are some other related problems which I did not talked about (sorry!)

Other interesting

problems

There are some other related problems which I did not talked about (sorry!)

* Amalgamations

Other interesting

problems

There are some other related problems which I did not talked about (sorry!)

* Amalgamations
* Hypertopes

Other interesting

 problemsThere are some other related problems which I did not talked about (sorry!)

* Amalgamations
* Hypertopes
* Small extensions.

Thanks!

