Highly symmetric polytopes with prescribed local combinatorics

Antonio Montero

National Autonomous University of Mexico

Algebraic Graph Theory International Webminar March 2021

A. Montero (IM UNAM (Mexico))

First, a Caley Graph...

A. Montero (IM UNAM (Mexico))

First, a Caley Graph...

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 2/33

The idea ...

The idea ...

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 3/33

The idea...

The idea...

The idea ...

The idea

The idea ...

Given an abstract *n*-polytope \mathcal{K}_{\dots}

A. Montero (IM UNAM (Mexico))

The idea ...

Given an abstract *n*-polytope \mathcal{K}_{\dots} what are the possibilities for an (n+1)-polytope \mathcal{P} with all the facets isomorphic to \mathcal{K} .

A. Montero (IM UNAM (Mexico))

The idea

Existence?

A. Montero (IM UNAM (Mexico))

The idea

Finiteness?

A. Montero (IM UNAM (Mexico))

The idea...

Type?

The idea...

Universality?

A. Montero (IM UNAM (Mexico))

The idea ...

Symmetry?

A. Montero (IM UNAM (Mexico))

An abstract n-polytope
 P is a poset that
 generalises the
 face-lattice of a
 convex polytope.

An abstract n-polytope
 P is a poset that
 generalises the
 face-lattice of a
 convex polytope.

* An abstract *n*-polytope *P* is a poset that generalises the face-lattice of a convex polytope.

* Facets.

* An abstract *n*-polytope *P* is a poset that generalises the face-lattice of a convex polytope.

* Facets.

An abstract n-polytope
 P is a poset that
 generalises the
 face-lattice of a
 convex polytope.
 Facets.

* Flags.

An abstract n-polytope
 P is a poset that
 generalises the
 face-lattice of a
 convex polytope.
 Facets.

* Flags.

A. Montero (IM UNAM (Mexico))

 8 0- and 1- polytopes are Boring...

 8 0- and 1- polytopes are Boring... * 0- and 1- polytopes are Boring...

- * O- and I- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.

- * O- and I- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps
- * Flags are small triangles

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps
- * Flags are small triangles

- * 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps
- * Flags are small triangles
- * Φ^i shares all But the *i*-face with Φ .

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps
- * Flags are small triangles
- * Φ^i shares all But the *i*-face with Φ .

- 8 0- and 1- polytopes are Boring...
- * 2-polytopes are combinatorial polygons.
- * 3-polytopes are maps
- * Flags are small triangles
- * Φ^i shares all But the *i*-face with Φ .

 In a map, the faces are polygons.

* In a map, the faces are polygons.

* Type $\{p,q\}$

 In a map, the faces are polygons.

- * Type $\{p, q\}$
 - Faces p-gons,

 In a map, the faces are polygons.

* Type $\{p,q\}$

- Faces p-gons,

- g around each vertex.

 In a map, the faces are polygons.

* Type $\{p,q\}$

- Faces p-Gons,

- q around each vertex.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - g around each vertex.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \dots, p_{n-1}\}$:

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$,

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$, - p_{n-1} around each (n-3)-face.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$, - p_{n-1} around each (n-3)-face.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$, - p_{n-1} around each (n-3)-face.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$, - p_{n-1} around each (n-3)-face.

- In a map, the faces are polygons.
- * Type $\{p,q\}$
 - Faces p-gons,
 - q around each vertex.
- * Facets are (n-1)-polytopes. * Type $\{p_1, \ldots, p_{n-1}\}$: - Facets of type $\{p_1, \ldots, p_{n-2}\}$, - p_{n-1} around each (n-3)-face.

* Type
$$\{\mathcal{K}, p_{n-1}\}$$

A. Montero (IM UNAM (Mexico))

* Q: Given \mathcal{K} , is there a polytope \mathcal{P} such that all the facets are isomorphic to \mathcal{K}

- Hint: Think in small rank.

- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

- Hint: Think in small rank.
- Answer: The extension of type $\{\mathcal{K}, 2\}$

Symmetries

* An automorphism of an *n*-polytope \mathcal{P} is an order-preserving Bijection.

Symmetries

* An automorphism of an *n*-polytope \mathcal{P} is an order-preserving Bijection.

* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P} .

Symmetries

* An automorphism of an *n*-polytope \mathcal{P} is an order-preserving Bijection.

* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P} .

* $\Gamma(\mathcal{P})$ acts freely on flags.

Symmetries

* An automorphism of an *n*-polytope \mathcal{P} is an order-preserving bijection.

* We denote by $\Gamma(\mathcal{P})$ the automorphism group of \mathcal{P} .

* $\Gamma(\mathcal{P})$ acts freely on flags.

* If this action is also transitive, we say that \mathcal{P} is regular.

Extensions

* Facets of regular polytopes are regular.

* Facets of regular polytopes are regular.

* If \mathcal{K} is a regular *n*-polytope, is there a regular (n+1)-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?

* Facets of regular polytopes are regular.

* If \mathcal{K} is a regular *n*-polytope, is there a regular (n+1)-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ? - The trivial extension of \mathcal{K} is regular if \mathcal{K} is regular.

* Facets of regular polytopes are regular.

* If \mathcal{K} is a regular *n*-polytope, is there a regular (n+1)-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?

- The trivial extension of $\mathcal K$ is regular if $\mathcal K$ is regular.
- The trivial extension is also very degenerate ...

* Facets of regular polytopes are regular.

* If \mathcal{K} is a regular *n*-polytope, is there a regular (n+1)-polytope \mathcal{P} with all the facets isomorphic to \mathcal{P} ?

- The trivial extension of ${\cal K}$ is regular if ${\cal K}$ is regular.
- The trivial extension is also very degenerate ...

* If \mathcal{K} is a *n*-polytope, does \mathcal{K} admit a non-degenerate regular extension?

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

If \mathcal{K} is a regular *n*-polytope and Φ is a flag, there exist automorphisms $\rho_0, \ldots, \rho_{n-1}$ such that

For \mathcal{P} a regular *n*-polytope * $\Gamma(\mathcal{P}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$

For \mathcal{P} a regular *n*-polytope * $\Gamma(\mathcal{P}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$

* If \mathcal{P} is of type $\{p_1,\ldots,p_{n-1}\}$, $\rho_i^2=1$ $(
ho_i
ho_j)^2=1$ if $|i-j|\geqslant 2$, $(
ho_{i-1}
ho_i)^{p_i}=1$

For \mathcal{P} a regular *n*-polytope * $\Gamma(\mathcal{P}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$

* If \mathcal{P} is of type $\{p_1, \dots, p_{n-1}\}$, $\rho_i^2 = 1$ $(\rho_i \rho_j)^2 = 1$ if $|i - j| \ge 2$, $(\rho_{i-1} \rho_i)^{p_i} = 1$

* $\Gamma(\mathcal{P})$ satisfies an intersection property.

A. Montero (IM UNAM (Mexico))

Extensions

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

 $egin{aligned} &
ho_i^2 = 1 \ & & \ & (
ho_i
ho_j)^2 = 1 & ext{if} & |i-j| \geqslant 2, \ & & \ & (
ho_{i-1}
ho_i)^{
ho_i} = 1 \end{aligned}$

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

* $(\rho_i \rho_j)^2 = 1$ if $|i - j| \ge 2$, $(\rho_{i-1}\rho_i)^{p_i} = 1$ * The intersection property. There exists a regular *n*-polytope $\mathcal{P}(\Gamma)$ such that * $\mathcal{P}(\Gamma)$ is of type $\{p_1, \dots, p_{n-1}\}$

 $\rho_{i}^{2} = 1$

Extensions

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

$$\begin{split} \rho_i^2 &= 1 \\ * \quad (\rho_i \rho_j)^2 &= 1 \quad \text{if} \quad |i - j| \geq 2, \\ (\rho_{i-1} \rho_i)^{p_i} &= 1 \\ * \quad \text{The intersection property.} \\ \text{There exists a regular } n \text{-polytope } \mathcal{P}(\Gamma) \text{ such that} \\ * \quad \mathcal{P}(\Gamma) \text{ is of type } \{p_1, \dots, p_{n-1}\} \\ * \quad \Gamma(\mathcal{P}(\Gamma)) &= \Gamma \end{split}$$

Theorem (Schulte, 82) Given $p_1, \ldots, p_{n-1} \in \{2, \ldots, \infty\}$ a group $\Gamma = \langle \rho_0, \ldots, \rho_{n-1} \rangle$ satisfying

$$\begin{split} \rho_i^2 &= 1 \\ * \quad (\rho_i \rho_j)^2 &= 1 \quad \text{if } |i - j| \geq 2, \\ (\rho_{i-1} \rho_i)^{p_i} &= 1 \\ * \quad \text{The intersection property.} \end{split}$$
There exists a regular *n*-polytope $\mathcal{P}(\Gamma)$ such that $* \quad \mathcal{P}(\Gamma) \text{ is of type } \{p_1, \dots, p_{n-1}\} \\ * \quad \Gamma(\mathcal{P}(\Gamma)) &= \Gamma \\ * \quad \text{The facets of } \mathcal{P}(\Gamma) \text{ are isomorphic to } \mathcal{P}(\langle \rho_0, \dots, \rho_{n-2} \rangle). \end{split}$

Extensions

Given a regular *n* polytope \mathcal{K} , with $\Gamma(\mathcal{K}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ and a group $\Gamma = \langle \tilde{\rho}_0, \dots, \tilde{\rho}_n \rangle$ * $\tilde{\rho}_n$ is an involution,

Given a regular *n* polytope \mathcal{K} , with $\Gamma(\mathcal{K}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ and a group $\Gamma = \langle \tilde{\rho}_0, \dots, \tilde{\rho}_n \rangle$

- * $\tilde{\rho}_n$ is an involution,
- * $\rho_i \mapsto \tilde{\rho}_i$, for $i \leqslant n-1$ is an embedding,

Given a regular *n* polytope \mathcal{K} , with $\Gamma(\mathcal{K}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ and a group $\Gamma = \langle \tilde{\rho}_0, \dots, \tilde{\rho}_n \rangle$

- * $\tilde{\rho}_n$ is an involution,
- * $\rho_i \mapsto \tilde{\rho}_i$, for $i \leq n-1$ is an embedding,
- * Γ satisfies the intersection property

Given a regular *n* polytope \mathcal{K} , with $\Gamma(\mathcal{K}) = \langle \rho_0, \dots, \rho_{n-1} \rangle$ and a group $\Gamma = \langle \tilde{\rho}_0, \dots, \tilde{\rho}_n \rangle$

- * $\tilde{\rho}_n$ is an involution,
- * $\rho_i \mapsto \tilde{\rho}_i$, for $i \leq n-1$ is an embedding,

* Γ satisfies the intersection property

The regular polytope $\mathcal{P}(\Gamma)$ is a regular extension of \mathcal{K} of type $\{\mathcal{K}, q\}$ where $q = o(\tilde{\rho}_{n-1}\tilde{\rho}_n)$.

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})} (\Gamma(\mathcal{F}) \times C_2).$

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})} (\Gamma(\mathcal{F}) \times C_2).$

* (Schulte, 82-85): Extension by permutations of facets. Type $\{\mathcal{K}, 6\}, \Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) \times S_{m+1}$

* (Schulte, 83): Universal extension. Type $\{\mathcal{K}, \infty\}$, $\Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) *_{\Gamma(\mathcal{F})} (\Gamma(\mathcal{F}) \times C_2).$

* (Schulte, 82-85): Extension by permutations of facets. Type $\{\mathcal{K}, 6\}, \Gamma(\mathcal{P}) \cong \Gamma(\mathcal{K}) \times S_{m+1}$

* (Danzer, 84): Generalised cubes $2^{\mathcal{K}}$. type $\{\mathcal{K}, 4\}$, $\Gamma(2^{\mathcal{K}}) \cong C_2^m \rtimes \Gamma(\mathcal{K})$

Extensions

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}, \forall s \ge 3$. Built using coset graphs

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}, \forall s \ge 3$. Built using coset graphs

* (Pellicer, 2009): Extensions of regular polytopes with prescribed type $(2s^{\mathcal{K}-1})$, Type $\{\mathcal{K}, 2s\}, \forall s \ge 2$, $\Gamma(2s^{\mathcal{K}-1}) \cong (\mathcal{C}_2 \times \mathcal{C}_s^{m-1}) \rtimes \Gamma(\mathcal{K})$

* (Pellicer, 2010): Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}, \forall s \ge 3$. Built using coset graphs

* (Pellicer, 2009): Extensions of regular polytopes with prescribed type $(2s^{\mathcal{K}-1})$, Type $\{\mathcal{K}, 2s\}, \forall s \ge 2$, $\Gamma(2s^{\mathcal{K}-1}) \cong (\mathcal{C}_2 \times \mathcal{C}_s^{m-1}) \rtimes \Gamma(\mathcal{K})$

* (Hartley, 2005): The *n*-hemicuse cannot be extended with an odd number.

* Regular polytopes are the most symmetric.

- * Regular polytopes are the most symmetric.
- * Degree of symmetry \leftrightarrow number of flag-orbits.

- * Regular polytopes are the most symmetric.
- * Degree of symmetry \leftrightarrow number of flag-orbits.
- * What about 2-orbits?

- * Regular polytopes are the most symmetric.
- * Degree of symmetry \leftrightarrow number of flag-orbits.
- * What about 2-orbits?
- * Chiral Maps:

 Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

- Chiral (irreflexible) maps have full rotational symmetry but dot not admit reflections.
- * Geometric chiral 4-polytopes were first studied by Coxeter (Twisted Honeycombs, 1970)
- The geometric definition can be given in combinatorial terms.

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 18/33

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91) Given a group $\Gamma = ...$

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91) Given a group $\Gamma = ...$ * ...some relations...

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91) Given a group $\Gamma = ...$

* ...some relations ...

* ... some intersection property...

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91) Given a group $\Gamma = ...$

* ...some relations ...

* ... some intersection property...

Then Γ is the automorphism group of a chiral polytope ...

(Shulte-Weiss, 91): An abstract polytope is chiral if it has 2 flag-orbits with adjacent flags in different orbits.

Theorem (Shulte-Weiss, 91) Given a group $\Gamma = ...$

*some relations ...

* ... some intersection property...

Then Γ is the automorphism group of a chiral polytope or the rotation group of a regular polytope.

* Chiral maps (chiral 3-polytopes): lots of examples.

- Infinitely many chiral toroidal maps.

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2, 3, 4, 5 or 6.

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
- * Rank 4:
 - First examples by Coxeter in the 70's

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of Genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
- * Rank 4:
 - First examples by Coxeter in the 70's
 - (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite quotients of hyperbolic honeycombs.

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of Genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
- * Rank 4:
 - First examples by Coxeter in the 70's
 - (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite quotients of hyperbolic honeycombs.
 - No chiral 4-polytopes from Euclidean honeycombs.

- Infinitely many chiral toroidal maps.
- No chiral maps on orientable surfaces of Genera 2, 3, 4, 5 or 6.
- Infinitely many surfaces admitting chiral maps.
- * Rank 4:
 - First examples by Coxeter in the 70's
 - (Colbourn-Weiss, Nostrand-Schulte, Schulte-Weiss, Monson-Schulte ... 90's): Examples arising as finite quotients of hyperbolic honeycombs.
 - No chiral 4-polytopes from Euclidean honeycombs.
 - (McMullen-Schulte, 96): No chiral *n*-polytopes from Euclidean tilings ($n \ge 4$).

* Rank 5:

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 20/33

* Rank 5:

- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)

* Rank 5:

- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.

* Rank 5:

- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.

* (Pellicer, 2010): Chiral polytopes exists in arbitrary rank.

Extensions

* Rank 5:

- (Schulte-Weiss, 95): First example of a chiral 5-polytope (very infinite)
- (Conder-Hubard-Pisanski, 2008): First finite example of a chiral 5-polytope.

* (Pellicer, 2010): Chiral polytopes exists in arbitrary rank.

 * (Cunningham, 2017): Chiral n-polytopes cannot be small if n is large enough.

Extensions

The extension problem

Given a _____ polytope \mathcal{K} , does \mathcal{K} admit a _____ extension \mathcal{P} ?

The extension problem

Given a _____ polytope \mathcal{K} , does \mathcal{K} admit a _____ extension \mathcal{P} ?

Proposition Let P be a chiral *n*-polytope: * All the facets of P are isomorphic.

The extension problem

Given a _____ polytope \mathcal{K} , does \mathcal{K} admit a _____ extension \mathcal{P} ?

Proposition

Let \mathcal{P} be a chiral *n*-polytope:

- * All the facets of \mathcal{P} are isomorphic.
- * All the facets of \mathcal{P} are either orientably regular or chiral but all the (n-2)-faces are regular.

* (Schulte-Weiss, 95): Every chiral polytope \mathcal{K} with regular facets admits a universal chiral extension

* (Schulte-Weiss, 95): Every chiral polytope K with regular facets admits a universal chiral extension

- Type $\{\mathcal{K},\infty\}$

* (Schulte-Weiss, 95): Every chiral polytope $\mathcal K$ with regular facets admits a universal chiral extension

- Type $\{\mathcal{K},\infty\}$
- Free products with amalgamation

* (Schulte-Weiss, 95): Every chiral polytope $\mathcal K$ with regular facets admits a universal chiral extension

- Type $\{\mathcal{K},\infty\}$
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope \mathcal{K} with regular facets admits a finite chiral extension

Extensions

* (Schulte-Weiss, 95): Every chiral polytope $\mathcal K$ with regular facets admits a universal chiral extension

- Type $\{\mathcal{K},\infty\}$
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope ${\cal K}$ with regular facets admits a finite chiral extension

- Type $\{\mathcal{K}, q\}$ for some even number q

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 22/33

* (Schulte-Weiss, 95): Every chiral polytope $\mathcal K$ with regular facets admits a universal chiral extension

- Type $\{\mathcal{K},\infty\}$
- Free products with amalgamation

* (Cunningham-Pellicer, 2013): Every finite chiral polytope \mathcal{K} with regular facets admits a finite chiral extension

- Type $\{\mathcal{K}, q\}$ for some even number q
- Permutation Group (coset Graphs).

Theorem (M., 2021 +)

* If \mathcal{K} is a finite dually bipartite chiral polytope with regular facets, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2s\}$.

Theorem (M., 2021 +)

- * If \mathcal{K} is a finite dually bipartite chiral polytope with regular facets, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type { $\mathcal{K}, 2s$ }.
- * If \mathcal{K} is a chiral polytope with regular facets and a non-degenerate regular quotient, there are infinitely many numbers s such that \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2s\}$.

Given an orientably regular polytope \mathcal{K} , does \mathcal{K} admit a chiral extension?

Given an orientably regular polytope \mathcal{K} , does \mathcal{K} admit a chiral extension?

* (Cunningham, 2017): If \mathcal{K} is (1, n-1)-flat, then \mathcal{K} does not admit a chiral extension.

Given an orientably regular polytope \mathcal{K} , does \mathcal{K} admit a chiral extension?

* (Cunningham, 2017): If \mathcal{K} is (1, n-1)-flat, then \mathcal{K} does not admit a chiral extension.

* (Conder - Hubard - Pellicer - O'Reilly, 2018 *): The *n*-simplex admits infinitely many chiral extensions with symmetric or alternating groups as automorphisms

Extensions

Given an orientably regular polytope \mathcal{K} , does \mathcal{K} admit a chiral extension?

* (Cunningham, 2017): If \mathcal{K} is (1, n-1)-flat, then \mathcal{K} does not admit a chiral extension.

* (Conder - Hubard - Pellicer - O'Reilly, 2018 *): The *n*-simplex admits infinitely many chiral extensions with symmetric or alternating groups as automorphisms

* (M.-Pellicer-Toledo, $2O21^+$): If *n* is even, almost every regular *n*-toroid admits a chiral extension.

A. Montero (IM UNAM (Mexico))

Extensions

Chiral extensions Open problems

* Does every chiral polytope (w.r.f) K admits a chiral extension with prescribed type?

Chiral extensions Open problems

* Does every chiral polytope (w.r.f) $\mathcal K$ admits a chiral extension with prescribed type?

* Does every (any) regular polytope admits universal chiral extension?

Chiral extensions Open problems

* Does every chiral polytope (w.r.f) $\mathcal K$ admits a chiral extension with prescribed type?

* Does every (any) regular polytope admits universal chiral extension?

* Does every regular non-degenerate polytope admits a chiral extension (with prescribed type)?

A. Montero (IM UNAM (Mexico))

Extensions

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 26/33

* For every proper subset $I \subseteq \{0, ..., n-1\}$ there exists a class of 2-orbit polytopes: the class 2_{I} .

- * For every proper subset $I \subseteq \{0, ..., n-1\}$ there exists a class of 2-orbit polytopes: the class 2_{I} .
- * Chirality = 2_{\emptyset} .

- * For every proper subset $I \subseteq \{0, ..., n-1\}$ there exists a class of 2-orbit polytopes: the class 2_{I} .
- * Chirality = 2_{\emptyset} .
- * (Hubard-Schulte, somewhere in the future): A characterisation theorem for the automorphism group Of polytopes in class 21.

- * For every proper subset $I \subseteq \{0, ..., n-1\}$ there exists a class of 2-orbit polytopes: the class 2_{I} .
- * Chirality = 2_{\emptyset} .
- (Hubard-Schulte, somewhere in the future): A characterisation theorem for the automorphism group Of polytopes in class 21.
- * (Pellicer-Potocnik-Toledo, 2019): Two-orbit maniplexes in class 21 exists for every n and every 1.

- * For every proper subset $I \subseteq \{0, ..., n-1\}$ there exists a class of 2-orbit polytopes: the class 2_{I} .
- * Chirality = 2_{\emptyset} .
- * (Hubard-Schulte, somewhere in the future): A characterisation theorem for the automorphism group Of polytopes in class 21.
- * (Pellicer-Potocnik-Toledo, 2019): Two-orbit maniplexes in class 2, exists for every n and every 1.
- * (Mochán, 2021 ⁺): Some of those maniplexes are in fact polytopes.

2-orbit extensions

* The *n*-polytopes in class 2_1 are facet transitive if $l \neq \{0, ..., n-2\}$.

2-orbit extensions

* The *n*-polytopes in class 2_1 are facet transitive if $l \neq \{0, ..., n-2\}$.

* The facets of polytopes in class 2, are regular or in class $2_{1 \setminus \{n-1\}}$.

2-orbit extensions

* The *n*-polytopes in class 2_1 are facet transitive if $l \neq \{0, ..., n-2\}$.

* The facets of polytopes in class 2_l are regular or in class $2_{l \setminus \{n-1\}}$.

 The extension problem makes sense and has two possibilities.

Extensions

* The polytopes in class $2_{\{0,\dots,n-2\}}$ are not facet-transitive.

* The polytopes in class 2_{{0,...,n-2}}</sub> are not facet-transitive.
* They have regular facets, of 2 different kinds.

- * The polytopes in class $2_{\{0,\dots,n-2\}}$ are not facet-transitive.
- * They have regular facets, Of 2 different kinds.
- * There are 2k facets around every (n-3)-face, k of each kind in an alternating way.

- * The polytopes in class $2_{\{0,\dots,n-2\}}$ are not facet-transitive.
- * They have regular facets, Of 2 different kinds.
- * There are 2k facets around every (n-3)-face, k of each kind in an alternating way.
- * We say that such polytopes have type $\left\{ \stackrel{\mathcal{P}}{O}, k \right\}$

- * The polytopes in class $2_{\{0,\dots,n-2\}}$ are not facet-transitive.
- * They have regular facets, Of 2 different kinds.
- * There are 2k facets around every (n-3)-face, k of each kind in an alternating way.
- * We say that such polytopes have type $\left\{ \stackrel{\mathcal{P}}{O}, k \right\}$

Figure: $\{\frac{4}{3}, 2\}$

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orbit polytope of type $\{\mathcal{P}_{\mathcal{O}}, k\}$?

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orbit polytope of type $\{\mathcal{P}_{\mathcal{O}}, k\}$?

* (Schulte-Monson, 2012) Characterise the automorphism groups of the alternating polytopes.

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orbit polytope of type $\{\mathcal{P}_{\mathcal{O}}, k\}$?

* (Schulte-Monson, 2012) Characterise the automorphism groups of the alternating polytopes.

* (Schulte-Monson, 2019, 2020) Two universal constructions:

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orbit polytope of type $\{\mathcal{P}_{\mathcal{O}}, k\}$?

* (Schulte-Monson, 2012) Characterise the automorphism groups of the alternating polytopes.

* (Schulte-Monson, 2019, 2020) Two universal constructions:

- $\mathcal{U}_{\mathcal{P},\mathcal{Q}}$: Universal alternating of type $\left\{ \begin{smallmatrix} \mathcal{P} \\ \mathcal{O} \end{smallmatrix}, \infty \right\}$

Extensions

Given \mathcal{P} and \mathcal{Q} regular and compatible polytopes (and k) is there an alternating 2-orbit polytope of type $\{\mathcal{P}_{\mathcal{O}}, k\}$?

* (Schulte-Monson, 2012) Characterise the automorphism groups of the alternating polytopes.

* (Schulte-Monson, 2019, 2020) Two universal constructions:

- $\mathcal{U}_{\mathcal{P},\mathcal{Q}}$: Universal alternating of type $\left\{ egin{smallmatrix} \mathcal{P} \\ \mathcal{O} \end{pmatrix},\infty
 ight\}$
- $\mathcal{U}^k_{\mathcal{P},\mathcal{Q}}$: Universal alternating of type $\{ \stackrel{\mathcal{P}}{\mathcal{Q}}, k \}$

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^k$ does not exists but that there is no alternating polytope of type $\{\frac{\mathcal{P}}{\mathcal{Q}}, k\}$.

* There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^k$ does not exists but that there is no alternating polytope of type $\{\mathcal{P}_{\mathcal{Q}}, k\}$.

* Conjecture: Given \mathcal{P} and \mathcal{Q} , there are infinitely many k such that $\mathcal{U}_{\mathcal{P},\mathcal{Q}}^k$ exists.

- * There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^k$ does not exists but that there is no alternating polytope of type $\{\mathcal{P}_{\mathcal{Q}}, k\}$.
- * Conjecture: Given \mathcal{P} and \mathcal{Q} , there are infinitely many k such that $\mathcal{U}_{\mathcal{P},\mathcal{Q}}^k$ exists.
- * Conjecture: There are infinitely many k for which there exist \mathcal{P} and \mathcal{Q} such that $\mathcal{U}_{\mathcal{P}}^k_{\mathcal{O}}$ does not exist.

- * There are examples of $(\mathcal{P}, \mathcal{Q}, k)$ such that not only $\mathcal{U}_{\mathcal{P}, \mathcal{Q}}^k$ does not exists but that there is no alternating polytope of type $\{\mathcal{P}_{\mathcal{Q}}, k\}$.
- * Conjecture: Given \mathcal{P} and \mathcal{Q} , there are infinitely many k such that $\mathcal{U}_{\mathcal{P},\mathcal{O}}^k$ exists.
- * Conjecture: There are infinitely many k for which there exist \mathcal{P} and \mathcal{Q} such that $\mathcal{U}_{\mathcal{P}}^k_{\mathcal{O}}$ does not exist.

* Problem Characterise the triplets $(\mathcal{P}, \mathcal{Q}, k)$ for which there exists a finite alternating polytope of type $\{\mathcal{P}, k\}$.

Very little is known for k-orbit polytopes with $k \ge 3$.

Very little is known for k-orbit polytopes with $k \ge 3$.

* (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.

Very little is known for k-orbit polytopes with $k \ge 3$.

- * (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
- * (Hubard Mochán, 2021 ⁺): Generators, relations and intersection properties for automorphism groups of k-orbit polytopes.

Very little is known for k-orbit polytopes with $k \ge 3$.

- * (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
- (Hubard Mochán, 2021 +): Generators, relations and intersection properties for automorphism groups of k-orbit polytopes.
- * Some techniques used for regular polytopes apply to a more general class (notably 2^{k} and related constructions).

Very little is known for k-orbit polytopes with $k \ge 3$.

- * (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
- * (Hubard Mochán, 2021 ⁺): Generators, relations and intersection properties for automorphism groups of k-orbit polytopes.
- * Some techniques used for regular polytopes apply to a more general class (notably 2^{k} and related constructions).

* Problem: Given a regular polytope \mathcal{K} , is there a k-orbit extension of \mathcal{K} .

Very little is known for k-orbit polytopes with $k \ge 3$.

- * (Cunningham-Pellicer, 2018): A list with more than 30 problems on k-orbit polytopes.
- * (Hubard Mochán, 2021 ⁺): Generators, relations and intersection properties for automorphism groups of k-orbit polytopes.
- * Some techniques used for regular polytopes apply to a more general class (notably 2^{k} and related constructions).
- * Problem: Given a regular polytope \mathcal{K} , is there a k-orbit extension of \mathcal{K} .
- * Problem: Given a k-orbit polytope \mathcal{K} , is there a universal k-orbit extension of \mathcal{K} .

Extensions

There are some other related problems which I did not talked about (sorry!)

There are some other related problems which I did not talked about (sorry!)

* Amalgamations

A. Montero (IM UNAM (Mexico))

Extensions

AGTIW 32/33

There are some other related problems which I did not talked about (sorry!)

* Amalgamations* Hypertopes

Extensions

There are some other related problems which I did not talked about (sorry!)

* Amalgamations

- * Hypertopes
- * Small extensions.

Extensions