Highly Symmetric Toroidal Polyhedra

Antonio Montero

National Autonomous University of Mexico

9th International Slovenian Conference on Graph Theory Bled, Slovenia - June 2019
In memory of Branko Grünbaum

The first paper I read...

... I think

The first paper I read...

... I think

Birkhäuser Verlag, Basel University of Waterioo

Expository papers

Regular polyhedra-old and new

Branko Grünbaum

Abstract. Although it is customary to define polygons as certain families of edges, when considering polyhedra it is usual to view polygons as 2 -dimensional pieces of the plane. If this rather illogical point of view is replaced by consistently understanding polygons as 1 -dimensional complexes, the theory of polyhedra becomes richer and more satisfactory. Even with the strictest definition of regularity this approach leads to 17 individual regular polyhedra in the Euclidean 3-space and 12 infinite families of such polyhedra, besides the traditional ones (which consist of 5 Platonic polyhedra, 4 Kepler-Poinsot polyhedra, 3 planar tessellations and 3 Petrie-Coxeter polyhedra). Among the many still open problems that naturally arise from the new point of view, the most obvious one is the question whether the regular polyhedra found in the paper are the only ones possible in the Euclidean 3-space.

The first paper I read...
... I think

The first paper I read...
... I think

$\{5,5 / 2\}$

$\{3,5 / 2\}$

The first paper I read...
... I think

\{4,4\}

$\{3,6\}$

\{6.3\}

The first paper I read...
... I think

The first paper I read...

... I think

$\left\{4^{\pi / 3} / 1,3\right\}$

$\left\{6^{\pi / 2} / 1,3\right\}$

$$
\left\{6^{\pi / 3} / 1,4\right\}
$$

What about regular polyhedra in other spaces?

What about regular polyhedra in other spaces?

- Bracho et al., 2000: Projective polyhedra with planar faces.

What about regular polyhedra in other spaces?

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in $\mathbb{E}^{4}\left(\mathbb{P}^{3}\right)$.

What about regular polyhedra in other spaces?

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in $\mathbb{E}^{4}\left(\mathbb{P}^{3}\right)$.
- Regular maps on the torus.

What about regular polyhedra in other spaces?

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in $\mathbb{E}^{4}\left(\mathbb{P}^{3}\right)$.
- Regular maps on the torus.

Can we classify regular polyhedra in the 3 -dimensional torus \mathbb{T}^{3} ?

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2 -valent graph.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2 -valent graph.
- Every edge belongs to 2 faces.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2 -valent graph.
- Every edge belongs to 2 faces.
- The vertex-figures of \mathcal{P} are cycles.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2-valent graph.
- Every edge belongs to 2 faces.
- The vertex-figures of \mathcal{P} are cycles.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2 -valent graph.
- Every edge belongs to 2 faces.
- The vertex-figures of \mathcal{P} are cycles.
- The symmetry group $G(\mathcal{P})$ is the set of isometries of \mathbb{T}_{Λ}^{3} that preserve \mathcal{P}.

I will not explicitly skip any definition

- The 3-dimensional torus \mathbb{T}_{Λ}^{3} is the quotient of \mathbb{E}^{3} by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}_{Λ}^{3} is a set of vertices, edges and faces such that.
- Every face is a connected 2 -valent graph.
- Every edge belongs to 2 faces.
- The vertex-figures of \mathcal{P} are cycles.
- The symmetry group $G(\mathcal{P})$ is the set of isometries of \mathbb{T}_{Λ}^{3} that preserve \mathcal{P}.
- \mathcal{P} is regular if $G(\mathcal{P})$ acts transitively on flags.

$$
\mathcal{P} \longrightarrow \mathbb{E}^{3}
$$

(1) Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?

(1) Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?
(2) Is \mathcal{P}_{Λ} as symmetric as \mathcal{P} ?

(1) Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?
(2) Is \mathcal{P}_{Λ} as symmetric as \mathcal{P} ?
(3) Is every regular polyhedron \mathcal{P}_{Λ} induced this way?

The usual trick

(1) $G(\mathcal{P})=\left\langle R_{i}: i \in I\right\rangle$,

The usual trick

(1) $G(\mathcal{P})=\left\langle R_{i}: i \in I\right\rangle$,
(2) $R_{i}=R_{i}^{\prime} t_{i}$,

The usual trick

(1) $G(\mathcal{P})=\left\langle R_{i}: i \in I\right\rangle$,
(2) $R_{i}=R_{i}^{\prime} t_{i}$,
(3) $H(\mathcal{P})=\left\langle\left\{R_{i}^{\prime}: i \in I\right\} \cup\{-I d\}\right\rangle$.

The usual trick

(1) $G(\mathcal{P})=\left\langle R_{i}: i \in I\right\rangle$,
(2) $R_{i}=R_{i}^{\prime} t_{i}$,
(3) $H(\mathcal{P})=\left\langle\left\{R_{i}^{\prime}: i \in I\right\} \cup\{-I d\}\right\rangle$.
(9) \mathcal{P}_{Λ} is as symmetric as \mathcal{P} if and only if Λ is preserved by $H(\mathcal{P})$.

The usual trick

(1) $G(\mathcal{P})=\left\langle R_{i}: i \in I\right\rangle$,
(2) $R_{i}=R_{i}^{\prime} t_{i}$,
(3) $H(\mathcal{P})=\left\langle\left\{R_{i}^{\prime}: i \in I\right\} \cup\{-I d\}\right\rangle$.
(9) \mathcal{P}_{Λ} is as symmetric as \mathcal{P} if and only if Λ is preserved by $H(\mathcal{P})$.

[3, 3]	[3, 4]		[3, 5]		D_{3}	\tilde{D}_{4}	\tilde{D}_{6}		
\{3, 3\}	$\{3,4\}$	\{4, 3\}	\{3, 5\}	\{5,3\}	\{3, 6\}\#\# ($)$ \}	\{4, 4\}	\{3, 6\}	\{6,3\}	
$\{6,3\}_{4}$	$\{4,3\}_{3}$	$\{6,4\}_{3}$	\{10, 5\}	$\{10,3\}$	$\{00,6\}_{3} \#\{\infty$	$\{0,4\}_{4}$	$\{0,6\}_{3}$	$\{0,3\}_{6}$	
$\{6,6 \mid 3\}$	$\{6,4 \mid 4\}$	$\{4,6 \mid 4\}$	\{6, $\left.\frac{2}{2}\right\}$	\{5, $\left.\frac{5}{2}\right\}$	\{6, 3\} \# $\{$ \}	\{4, 4\}\# 1 \}	\{3, 6\}\# $\{$ \}		
$\{0,6\}_{4,4}$	$\{\infty, 4\}_{6,4}$	$\{\infty, 6\}_{6,3}$	\{ $\left.\frac{5}{2}, 5\right\}$	$\{6,5\}$	\{ 00,3$\}_{6} \\|_{1}$ \}	$\{0,4\}_{4} \#$ \# $\}$	\{6,3\}\#\{00\}	$\{0,3\}_{6} \#\{00\}$	
$\{6,6\}_{4}$	\{6, 4\} ${ }_{6}$	$\{4,6\}_{6}$	$\left\{\frac{10}{3}, 3\right\}$	\{ $\left.\frac{5}{2}, 3\right\}$		$\{4,4\} \#\{00\}$			
$\{0,3\}^{(a)}$	$\{00,4\}, * 3$	$\{\infty, 3\}^{(b)}$	\{3, $\left.\frac{5}{2}\right\}$	$\left\{\frac{10}{3}, \frac{5}{2}\right\}$		$\{0,4\} 4 \# \#\}$			

Long story short

Long story short

\mathcal{P}	$\boldsymbol{a} \boldsymbol{\Lambda}_{(1,0,0)}$			$\boldsymbol{a} \boldsymbol{\Lambda}_{(1,1,0)}$			$\boldsymbol{a} \boldsymbol{\Lambda}_{(1,1,1)}$		
	α_{0}	α_{1}	$\left(\alpha_{0}, \alpha_{1}\right]$	α_{0}	α_{1}	$\left(\alpha_{0}, \alpha_{1}\right]$	α_{0}	α_{1}	$\left(\alpha_{0}, \alpha_{1}\right]$
$\{3,3\}$	2	2	-	2	2	-	1	2	$(1,2]$
$\{3,4\}$	1	2	$(1,2)$	1	1	-	$\frac{1}{2}$	1	$\left(\frac{1}{2}, 1\right)$
$\{4,3\}$	2	2	-	1	2	$(1,2)$	1	2	$(1,2)$

Table 6: Parameters for finite polyhedra

Long story short

										Polyhedron	Possible	lues of a
\mathcal{P}	α_{0}		$\left(\alpha_{0}, \alpha_{1}\right]$	α_{0}		$\begin{aligned} & 1,0) \\ & \left(\alpha_{0}, \alpha_{1}\right] \end{aligned}$	α_{0}			$\{4,4\}$	$\begin{aligned} & a \in \mathbb{N} \backslash\{1\} \\ & a \in \frac{1}{2}(\mathbb{N} \backslash\{1,2\}) \\ & a \in \mathbb{N} \backslash\{1\} \end{aligned}$	if $\boldsymbol{\Lambda}=\Lambda_{(1,0,0)}{ }^{D}$ if $\boldsymbol{\Lambda}=\Lambda_{(1,1,0)}{ }^{D}$ if $\boldsymbol{\Lambda}=\Lambda_{(1,1,1)}{ }^{D}$
$\{3,3\}$	2	2	-	2	2	-	1	2	(1)		$a \in \frac{1}{2}(\mathbb{N} \backslash\{1,2\})$	if $\boldsymbol{\Lambda}=\left\langle\Lambda_{(1,1)}, t_{3}\right\rangle^{D}$
$\{3,4\}$	1	2	$(1,2)$	1	1	-	$\frac{1}{2}$	1	($\{3,6\}$	$a \in \mathbb{N} \backslash\{1\}$	if $\boldsymbol{\Lambda}=\left\langle\Lambda_{(1,0)}^{\{3,6\}}, t_{3}\right\rangle^{D}$
$\{4,3\}$	2	2	-	1	2	$(1,2)$	1	2	(1)		$a \in \frac{1}{3}(\mathbb{N} \backslash\{1\})$	if $\boldsymbol{\Lambda}=\left\langle\Lambda_{(1,1)}^{(3,6)}, t_{3}\right\rangle^{D}$
Table 6: Parameters for finite polyhedra										$\{6,3\}$	$\begin{aligned} & a \in \frac{1}{2}(\mathbb{N} \backslash\{1,2\}) \\ & a \in \frac{1}{2} \mathbb{N} \end{aligned}$	if $\boldsymbol{\Lambda}=\left\langle\Lambda_{(1,0)}^{\{3,6\}}, t_{3}\right\rangle^{D}$ if $\boldsymbol{\Lambda}=\left\langle\Lambda_{(1,1)}^{(3,6)}, t_{3}\right\rangle^{D}$

Table 8: Parameters for planar apeirohedra

Long story short

Table 7: Parameters for pure apeirohedra

Long story short

Table 9: Parameters for $\{4,4\} \#\},\{4,4\} \#\{\infty\}$ and their Petrials

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

I wanted to see them...

To summarise

- Finite polyhedra

To summarise

- Finite polyhedra
- $\{3,5\},\{5,3\}$, their petrials and stellations: non-regular.

To summarise

- Finite polyhedra
- $\{3,5\},\{5,3\}$, their petrials and stellations: non-regular.
- $\{3,3\},\{3,4\},\{4,3\}$ and their petrials: regular with boring drawings.

To summarise

- Finite polyhedra
- $\{3,5\},\{5,3\}$, their petrials and stellations: non-regular.
- $\{3,3\},\{3,4\},\{4,3\}$ and their petrials: regular with boring drawings.
- Planar polyhedra: Regular with boring and no-that-boring drawings.

To summarise

- Finite polyhedra
- $\{3,5\},\{5,3\}$, their petrials and stellations: non-regular.
- $\{3,3\},\{3,4\},\{4,3\}$ and their petrials: regular with boring drawings.
- Planar polyhedra: Regular with boring and no-that-boring drawings.
- Pure apeirohedra: Regular, almost all with only boring drawings.

To summarise

- Finite polyhedra
- $\{3,5\},\{5,3\}$, their petrials and stellations: non-regular.
- $\{3,3\},\{3,4\},\{4,3\}$ and their petrials: regular with boring drawings.
- Planar polyhedra: Regular with boring and no-that-boring drawings.
- Pure apeirohedra: Regular, almost all with only boring drawings.
- Blended apeirohedra : Regular with crazy drawings.

Thank you!

