Highly Symmetric Toroidal Polyhedra

Antonio Montero

National Autonomous University of Mexico

9th International Slovenian Conference on Graph Theory Bled, Slovenia - June 2019 In memory of Branko Grünbaum

... I think

... I think

Aequationes Mathematicae 16 (1977) 1-20 University of Waterloo Birkhäuser Verlag, Basel

Expository papers

Regular polyhedra-old and new

BRANKO GRÜNBAUM

Abstract. Although it is customary to define polygons as certain families of edges, when considering polyhedra it is usual to view polygons as 2-dimensional pieces of the plane. If this rather illogical point of view is replaced by consistently understanding polygons as 1-dimensional complexes, the theory of polyhedra becomes richer and more satisfactory. Even with the strictest definition of regularity this approach leads to 17 individual regular polyhedra in the Euclidean 3-space and 12 infinite families of such polyhedra, besides the traditional ones (which consist of 5 Platonic polyhedra, 4 Kepler-Poinsot polyhedra, 3 planar tessellations and 3 Petrie-Coxeter polyhedra). Among the many still open problems that naturally arise from the new point of view, the most obvious one is the question whether the regular polyhedra found in the paper are the only ones possible in the Euclidean 3-space.

Tero (UNAM)

Tero (UNAM)

Highly Symmetric Toroidal Polyhedra

• Bracho et al., 2000: Projective polyhedra with planar faces.

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in \mathbb{E}^4 (\mathbb{P}^3).

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in \mathbb{E}^4 (\mathbb{P}^3).
- Regular maps on the torus.

- Bracho et al., 2000: Projective polyhedra with planar faces.
- McMullen, 2007: Regular polyhedra in \mathbb{E}^4 (\mathbb{P}^3).
- Regular maps on the torus.

Can we classify regular polyhedra in the 3-dimensional torus \mathbb{T}^3 ?

• The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron ${\mathcal P}$ in ${\mathbb T}^3_\Lambda$ is a set of vertices, edges and faces such that.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}^3_{Λ} is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron ${\mathcal P}$ in ${\mathbb T}^3_\Lambda$ is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.
 - Every edge belongs to 2 faces.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}^3_{Λ} is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.
 - Every edge belongs to 2 faces.
 - The vertex-figures of \mathcal{P} are cycles.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}^3_{Λ} is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.
 - Every edge belongs to 2 faces.
 - ▶ The vertex-figures of *P* are cycles.

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}^3_{Λ} is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.
 - Every edge belongs to 2 faces.
 - The vertex-figures of \mathcal{P} are cycles.
- The symmetry group $G(\mathcal{P})$ is the set of isometries of \mathbb{T}^3_Λ that preserve \mathcal{P} .

- The 3-dimensional torus \mathbb{T}^3_Λ is the quotient of \mathbb{E}^3 by a group Λ generated by 3 independent translations.
- A polyhedron \mathcal{P} in \mathbb{T}^3_{Λ} is a set of vertices, edges and faces such that.
 - Every face is a connected 2-valent graph.
 - Every edge belongs to 2 faces.
 - The vertex-figures of \mathcal{P} are cycles.
- The symmetry group $G(\mathcal{P})$ is the set of isometries of \mathbb{T}^3_Λ that preserve \mathcal{P} .
- \mathcal{P} is regular if $G(\mathcal{P})$ acts transitively on flags.

 $\mathcal{P} \longrightarrow \mathbb{E}^3$

() Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?

() Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?

2 Is \mathcal{P}_{Λ} as symmetric as \mathcal{P} ?

- **(**) Is the "polyhedron" induced by \mathcal{P} actually a polyhedron?
- **2** Is \mathcal{P}_{Λ} as symmetric as \mathcal{P} ?
- **③** Is every regular polyhedron \mathcal{P}_{Λ} induced this way?

•
$$G(\mathcal{P}) = \langle R_i : i \in I \rangle,$$

• $R_i = R'_i t_i,$

$$\begin{array}{l} \bullet \quad G(\mathcal{P}) = \langle R_i : i \in I \rangle, \\ \bullet \quad R_i = R'_i t_i, \\ \bullet \quad H(\mathcal{P}) = \langle \{ R'_i : i \in I \} \cup \{ -Id \} \rangle. \end{array}$$

- $R_i = R'_i t_i,$
- \mathcal{P}_{Λ} is as symmetric as \mathcal{P} if and only if Λ is preserved by $H(\mathcal{P})$.

- $R_i = R'_i t_i,$

• \mathcal{P}_{Λ} is as symmetric as \mathcal{P} if and only if Λ is preserved by $H(\mathcal{P})$.

[3, 3]	[3, 4]		[3, 5]		₽D3	Đ4	₽¯6	
$\{3, 3\} \\ \{6, 3\}_4 \\ \{6, 6 3\} \\ \{\infty, 6\}_{4,4}$	$\{3, 4\} \\ \{4, 3\}_3 \\ \{6, 4 4\} \\ \{\infty, 4\}_{6,4}$	$ \{4, 3\} \{6, 4\}_3 \{4, 6 4\} \{\infty, 6\}_{6,3} $	$ \{3, 5\} \\ \{10, 5\} \\ \{6, \frac{2}{2}\} \\ \{\frac{5}{2}, 5\} $	$\{5, 3\}$ $\{10, 3\}$ $\{5, \frac{5}{2}\}$ $\{6, 5\}$	$\begin{array}{l} \{3, 6\} \#\{\infty\} \\ \{\infty, 6\}_3 \#\{\infty\} \\ \{6, 3\} \#\{\} \\ \{\infty, 3\}_6 \#\{\} \end{array}$	$ \{4, 4\} \\ \{\infty, 4\}_4 \\ \{4, 4\}\#\{\} \\ \{\infty, 4\}_4 \#\{\} $	{3, 6} {\omega, 6}_3 {3, 6}#{ } {6, 3}#{\omega}	$ \{6, 3\} \\ \{\infty, 3\}_6 \\ \{\infty, 6\}_3 \# \{\} \\ \{\infty, 3\}_6 \# \{\infty\} \} $
$\{6, 6\}_4$ $\{\infty, 3\}^{(a)}$	$\{6, 4\}_6$ $\{\infty, 4\}_{,*3}$	$\{4, 6\}_6$ $\{\infty, 3\}^{(b)}$	$\{\frac{10}{3}, 3\}$ $\{3, \frac{5}{2}\}$	$\{\frac{5}{2}, 3\}$ $\{\frac{10}{3}, \frac{5}{2}\}$		$\{4, 4\}\#\{\infty\}$ $\{\infty, 4\}_4\#\{\}$		

Long story short

Long story short

Р	aA(1,0,0)			aA(1,1,0)			aA(1,1,1)		
	α0	α1	$(\alpha_0, \alpha_1]$	α0	α_1	$(\alpha_0, \alpha_1]$	α0	α1	(α ₀ , α ₁]
{3,3}	2	2	-	2	2	-	1	2	(1,2]
{3, 4}	1	2	(1,2)	1	1	-	1/2	1	$(\frac{1}{2}, 1)$
{4,3}	2	2	-	1	2	(1, 2)	1	2	(1,2)

Long story short

Р		<i>α</i> Λ ₍₁	,0,0)		<i>α</i> Λ ₍₁	,1,0)		aA(1	,1,1)	{4,4}	$a \in \mathbb{N} \setminus \{1\}$	$if \Lambda = \Lambda_{(1,0,0)}^{D}$
	α0	α1	$(\alpha_0, \alpha_1]$	α0	α1	$(\alpha_0, \alpha_1]$	α0	α1	(α ₀		$a \in \frac{1}{2}(\mathbb{N} \setminus \{1, 2\})$ $a \in \mathbb{N} \setminus \{1\}$	if $\Lambda = \Lambda_{(1,1,0)}^{D}$ if $\Lambda = \Lambda_{(1,1,1)}^{D}$
3,3}	2	2	-	2	2	-	1	2	(1		$a \in \frac{1}{2}(\mathbb{N} \setminus \{1, 2\})$	if $\Lambda = \langle \Lambda_{(1,1)}, t_3 \rangle$
3,4}	1	2	(1,2)	1	1	-	1/2	1	({3,6}	$a \in \mathbb{N} \setminus \{1\}$	if $\Lambda = \langle \Lambda_{(1,0)}^{\{3,6\}}, t_3 \rangle$
4,3}	2	2	-	1	2	(1,2)	1	2	(1	(-)-)	$a \in \frac{1}{2}(\mathbb{N} \setminus \{1\})$	if $\Lambda = \langle \Lambda_{(1,1)}^{\{3,6\}}, t_3 \rangle$
able 6	: Para	meter	s for finite	polyhe	dra	{6, 3}	$a \in \frac{1}{2}(\mathbb{N} \setminus \{1, 2\})$	if $\Lambda = \langle \Lambda_{(1,0)}^{\{3,6\}}, t_3 \rangle$				
											$a \in \frac{1}{2}\mathbb{N}$	if $\Lambda = \langle \Lambda_{(1,1)}^{[3,6]}, t_3$

Table 8: Parameters for planar apeirohedra

Long story short

									Polyhedron		Possible values of <i>a</i>				
	Р	α0	αΛ(1 α1	$\begin{array}{c c} a \Lambda_{(1,1,0)} \\ \alpha_0 & \alpha_1 & (\alpha_0) \end{array}$		1,1,0) (α ₀ , α ₁]	α0	$\begin{array}{c} a\Lambda_{(1,1,1)} \\ \alpha_0 \alpha_1 (\alpha_0) \end{array}$		{4,4}	$a \in \mathbb{N} \setminus \{a \in \frac{1}{2}(\mathbb{N} \mid a \in \mathbb{N} \setminus \{a \in \mathbb{N} $	\{1,2})	if $\Lambda = \Lambda_{(1,0,0)}^{D}$ if $\Lambda = \Lambda_{(1,1,0)}^{D}$		
	{3, 3} {3, 4}	2	2	_ (1,2)	2	2	-	1 1 2	2	(1	{3,6}		\{1,2}) [1}	if $\Lambda = \langle \Lambda_{(1,0)}^{\{3,6\}}, t_3 \rangle^D$	
Р	Т (Ф)			$\Lambda = a\Lambda_{(1,0)}$,0)		Possible $\Lambda = a$				$\Lambda = a\Lambda_{(1)}$	1,1)	1}) 1,2})	if $\Lambda = \langle \Lambda_{(1,1)}^{[3,6]}, t_3 \rangle^L$ if $\Lambda = \langle \Lambda_{(1,0)}^{[3,6]}, t_3 \rangle^L$ if $\Lambda = \langle \Lambda_{(1,0)}^{[3,6]}, t_3 \rangle^L$	
{4,6 4} {6,4 4}	$\begin{array}{c c} & A_{(1,1,1)} \\ & A_{(1,1,1)} \\ \\ & 2A_{(1,1,0)} \\ & A_{(1,1,1)} \end{array}$		a = ^p	$a \in 2\mathbb{N}$ $a \in 2\mathbb{N}$,		2)	a	2N 2N,	nod 17		$a \in \mathbb{N}$ $a \in \mathbb{N},$ $a = \frac{p}{6}, p \equiv \pm 4 \pmod{12}$			nar apeirohedra	
{6,6 3} {∞,6} _{4,4}				$a \in 2(\mathbb{N} \setminus \{a \in 2\mathbb{N}\})$	1})	2)	$a \in 2(\mathbb{N} \setminus \{1\})$ $a \in 2\mathbb{N}$			$a \in \mathbb{N} \setminus a \in \mathbb{N}$	{1}				
$\{\infty, 4\}_{6,4}$ $\{\infty, 6\}_{6,3}$	Λ _{(1,1} , 2Λ _{(1,1}		$a = \frac{p}{3}$	$a \in 2\mathbb{N},$, $p \equiv \pm 4$ (i) $a \in 2\mathbb{N}$		2)	$a=\frac{p}{3}, p\equiv$	2ℕ, ±4 (n ∶2ℕ	nod 12	2) ($a \in \mathbb{N}$ $a = \frac{p}{6}, \ p \equiv \pm 4$ $a \in \mathbb{N}$	(mod 12)			
$\{6, 6\}_4$ $\{4, 6\}_6$	2A _{(1,0} 2A _{(1,0}	,0)		$a \in 2(\mathbb{N} \setminus \{a \in 2\mathbb{N} \}$			a e	2N 2N			$a \in \mathbb{N}$ $a \in \mathbb{N}$	1			
$\{\infty, 3\}^{(b)}$ $\{\infty, 3\}^{(a)}$	2A _{(1,1} 2A _{(1,1}		$a = \frac{p}{3}$	$a \in 2\mathbb{N},$, $p \equiv \pm 4$ (i) $a \in 2\mathbb{N},$	nod 1		$a=\frac{p}{3}, p\equiv$	2ℕ, ±4 (n 2ℕ,		2) a	$a \in \mathbb{N}$ $a = \frac{p}{6}, p \equiv \pm 4$ $a \in \mathbb{N}$	(mod 12)			
{6, 4} ₆	2A(1,0		$a = \frac{p}{3}$				$a=\frac{p}{3}, p\equiv$		nod 12	2) a	$a = \frac{p}{6}, p \equiv \pm 4$ $a \in \mathbb{N} \setminus 1$	(mod 12)			

Table 7: Parameters for pure apeirohedra

Long story short

											Polyhedron	Po	es of a	
	P {3, 3} {3, 4}	α ₀ 2	-	,0,0) (α ₀ , α ₁] - (1, 2)	α ₀	αΛ ₍₁ α ₁ 2 1	.,1,0) (α ₀ , α ₁ - -	$\left \begin{array}{c} \alpha_0 \\ 1 \\ \frac{1}{2} \end{array} \right $	αΛ ₍₁ α ₁ 2 1	(1) (<i>a</i> ₀	{4, 4}	$a \in \mathbb{N} \setminus \{1\}$ $a \in \frac{1}{2}(\mathbb{N} \setminus \{1\})$ $a \in \mathbb{N} \setminus \{1\}$ $a \in \frac{1}{2}(\mathbb{N} \setminus \{1\})$ $a \in \mathbb{N} \setminus \{1\}$	<pre>[1, 2}) if if [1, 2]) if</pre>	$ \begin{split} & A = A_{(1,0,0)}{}^{D} \\ & A = A_{(1,1,0)}{}^{D} \\ & A = A_{(1,1,1)}{}^{D} \\ & A = A_{(1,1,1)}{}^{D} \\ & A = \langle A_{(1,1)}, t_3 \rangle^{D} \\ & A = \langle A_{(1,0)}, t_3 \rangle^{D} \end{split} $
Р	Т(P)	-	-	$\Lambda = a\Lambda_{(1,0)}$,0)	^	Possible A =	1.1		2	$\Lambda = a\Lambda_{(1)}$		1}) if.	$ \begin{array}{l} \Lambda = \langle \Lambda_{(1,0)}^{(1,0)}, t_3 \rangle^D \\ \Lambda = \langle \Lambda_{(1,1)}^{(3,6)}, t_3 \rangle^D \\ \Lambda = \langle \Lambda_{(1,0)}^{(3,6)}, t_3 \rangle^D \\ \Lambda = \langle \Lambda_{(1,1)}^{(3,6)}, t_3 \rangle^D \end{array} $
{4,6 4} {6,4 4}	$\Lambda_{(1,1,1)}$, $\Lambda_{(1,1,1)}$		P	- с эрт Ф Л(:				987	Л	(1,1,0)	3	Λ _{(1,1}		$\langle \Lambda_{(1,1)}, t_3 \rangle$
$\begin{cases} 6, 6 3 \\ \{\infty, 6\}_{4,4} \\ \{\infty, 4\}_{6,4} \end{cases}$ $\{\infty, 6\}_{6,3} \\ \{6, 6\}_4 \\ \{4, 6\}_6 \\ \{\infty, 3\}^{(b)} \end{cases}$	$2\Lambda_{(1,1,1)} \\ \Lambda_{(1,1,1)} \\ \Lambda_{(1,1,1)} \\ 2\Lambda_{(1,1,1)} \\ 2\Lambda_{(1,1,0,1)} \\ 2\Lambda_{(1,0,1,1)} \\ 2\Lambda_{(1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1)} \\ 2\Lambda_{(1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1,1,1,1,1,1)} \\ 2\Lambda_{(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,$)) 0) 0) 1)	{4, 4}#{} 2 + p, 2 + r 2 + p, 2 + r 2 p, 2 + r 2 p, 2 r				$\begin{array}{c c} r < g. \\ 2 + p, 2 + r, 2 + \frac{g}{g} \\ 2r < g. \\ r \leq g. \end{array}$				$\begin{array}{l} , 2 + \frac{s}{g} \text{ and} \\ 2 + \frac{s}{g}, 2 + g \\ 2 + \frac{s}{g}, 2 + g \\ 2 + \frac{s}{g}, 2 + g \\ \leq g. \\ \leq g. \end{array}$	2 + p, 2 + r a 2 + p, 2 r 2r < g. 2 + p, 2 r, r < g. 2 p, 2 r a 2 p, 2 r a	, 2 <i>q</i> and , 2 ∤ <i>q</i> and and 2 <i>r</i> < <i>g</i> .	2 + p, 2 + r, 2 + $\frac{q}{g}$ and 2r $\leq g$. 2 + p, 2 + r, 2 $\frac{q}{g}$ and r $\leq g$. 2 + p, 2 r and r $< g$. 2 p, 2 r and $r < g$. 2 p, 2 r and r $< g$.
$\{\infty, 3\}^{(a)}$ $\{6, 4\}_{6}$ $\{\infty, 4\}_{.,*3}$	2A(1,1,1) 2A(1,0,0) A(1,1,1)	0)	[4, 4}#{	g = that	3 and $r \equiv \pm$	do no	2 † <i>r</i> . t occur od 12)	g = 1, g = 3 a occur:	2 <i>† p</i> , nd nor	2∤r, neoft	2 † q, 2 † s. ne following	g = 3 and d that $r \equiv \pm 4$ and $2 \mid p$.		$2 \mid q$. g = 3 and do not oc-
Table 7: Pa	(-1-1-	<u></u>			2 p. [1,3}.				2 (mo		and 2 p. and 2 pq.	g ∉ {1, 3}.		cur that $r \equiv \pm 4 \pmod{12}$ and $2 \mid p$. $g \notin \{1, 3\}$.

Table 9: Parameters for $\{4, 4\}$ # $\{$ $\}$, $\{4, 4\}$ # $\{\infty\}$ and their Petrials

• Finite polyhedra

• Finite polyhedra

 \blacktriangleright $\{3,5\},$ $\{5,3\},$ their petrials and stellations: non-regular.

• Finite polyhedra

- $\{3,5\}$, $\{5,3\}$, their petrials and stellations: non-regular.
- \blacktriangleright $\{3,3\},$ $\{3,4\},$ $\{4,3\}$ and their petrials: regular with boring drawings.

• Finite polyhedra

- ▶ $\{3,5\}$, $\{5,3\}$, their petrials and stellations: non-regular.
- \blacktriangleright $\{3,3\},$ $\{3,4\},$ $\{4,3\}$ and their petrials: regular with boring drawings.

• Planar polyhedra: Regular with boring and no-that-boring drawings.

• Finite polyhedra

- $\{3,5\}$, $\{5,3\}$, their petrials and stellations: non-regular.
- \blacktriangleright $\{3,3\},$ $\{3,4\},$ $\{4,3\}$ and their petrials: regular with boring drawings.

• Planar polyhedra: Regular with boring and no-that-boring drawings.

• Pure apeirohedra: Regular, almost all with only boring drawings.

• Finite polyhedra

- ▶ $\{3,5\}$, $\{5,3\}$, their petrials and stellations: non-regular.
- \blacktriangleright $\{3,3\},$ $\{3,4\},$ $\{4,3\}$ and their petrials: regular with boring drawings.

• Planar polyhedra: Regular with boring and no-that-boring drawings.

• Pure apeirohedra: Regular, almost all with only boring drawings.

• Blended apeirohedra : Regular with crazy drawings.

Thank you!