Chiral extensions of chiral polytopes

Antonio Montero

Centro de Ciencias Matemáticas UNAM

PRIMA 2017 Oaxaca, Oax. México August 2017

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 1/17

Abstract polytopes are combinatorial objects that generalize geometric objects such as

* Convex polytopes.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

Abstract polytopes are combinatorial objects that generalize geometric objects such as

* Convex polytopes.

* Maps on surfaces.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2011 2/17

Abstract polytopes are combinatorial objects that generalize geometric objects such as

* Convex polytopes.

* Maps on surfaces.

* Tessellations of \mathbb{E}^n and \mathbb{H}^n .

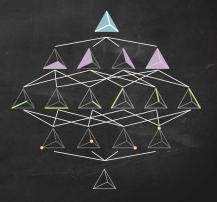
A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 2/17

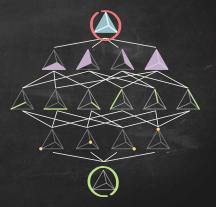
An abstract *n*-polytope \mathcal{P} is a partially ordered set that satisfies:

P has a maximum and a minimum.

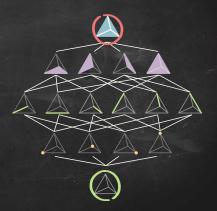


An abstract *n*-polytope \mathcal{P} is a partially ordered set that satisfies:

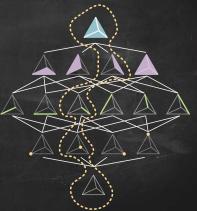
P has a maximum and a minimum.



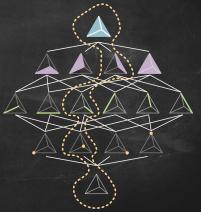
- * \mathcal{P} has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.



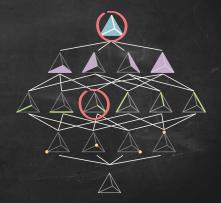
- * \mathcal{P} has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.



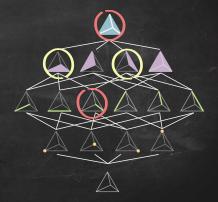
- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.



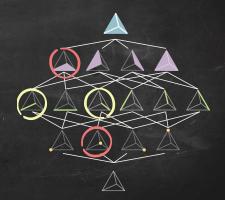
- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.



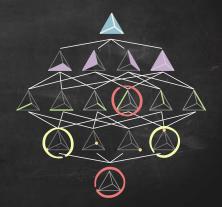
- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.



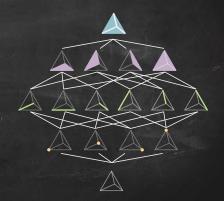
- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of \mathcal{P} has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.



- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of P has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.



- *P* has a maximum and a minimum.
- * Every maximal chain (flag) of \mathcal{P} has n+2 elements.
- * \mathcal{P} satisfies the diamond condition.
- * P is strongly connected.



ABSTRACT POLYTOPES Symmetries

* An automorphism of an abstract polytope \mathcal{P} is an order-preserving bijection $\varphi: \mathcal{P} \to \mathcal{P}$.

ABSTRACT POLYTOPES Symmetries

* An automorphism of an abstract polytope \mathcal{P} is an order-preserving bijection $\varphi: \mathcal{P} \to \mathcal{P}$.

* The group $\Gamma(\mathcal{P})$ of automorphisms of \mathcal{P} acts freely on the set of flags.

ABSTRACT POLYTOPES Symmetries

- * An automorphism of an abstract polytope \mathcal{P} is an order-preserving bijection $\varphi: \mathcal{P} \to \mathcal{P}$.
- * The group $\Gamma(\mathcal{P})$ of automorphisms of \mathcal{P} acts freely on the set of flags.
- * An abstract polytope is regular if the action of $\Gamma(\mathcal{P})$ on the flags is transitive.

An *n*-polytope is a bunch of (n-1)-polytopes glued together in a nice way.

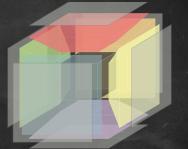
An *n*-polytope is a bunch of (n-1)-polytopes glued together in a nice way.

 A cube is build of squares.

An *n*-polytope is a bunch of (n-1)-polytopes glued together in a nice way.

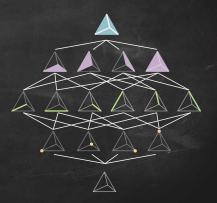
 A cube is build of squares.

 A hypercube is build of 8 cubes.



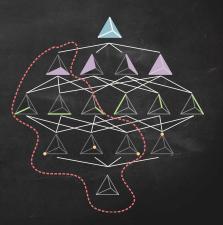
An *n*-polytope is a bunch of (n-1)-polytopes glued together in a nice way.

- A cube is build of squares.
- A hypercube is build of 8 cubes.
- This idea might be partially recovered in the abstract context.



An *n*-polytope is a bunch of (n-1)-polytopes glued together in a nice way.

- A cube is build of squares.
- A hypercube is build of 8 cubes.
- This idea might be partially recovered in the abstract context.



The extension problem

Given an abstract *n*-polytope \mathcal{K} , does there exists an abstract (n+1)-polytope \mathcal{P} such that all the facets of \mathcal{P} are isomorphic to \mathcal{K} ?

The extension problem

Given an abstract *n*-polytope \mathcal{K} , does there exists an abstract (n+1)-polytope \mathcal{P} such that all the facets of \mathcal{P} are isomorphic to \mathcal{K} ?

Given an abstract regular *n*-polytope \mathcal{K} , does there exists an abstract regular (n+1)-polytope \mathcal{P} such that all the facets of \mathcal{P} are isomorphic to \mathcal{K} ?

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 6/17

The extension problem

Given an abstract *n*-polytope \mathcal{K} , does there exists an abstract (n+1)-polytope \mathcal{P} such that all the facets of \mathcal{P} are isomorphic to \mathcal{K} ?

Given an abstract regular *n*-polytope \mathcal{K} , does there exists an abstract regular (n+1)-polytope \mathcal{P} such that all the facets of \mathcal{P} are isomorphic to \mathcal{K} ?

In such situation we say that \mathcal{P} is a (regular) extension of \mathcal{K} .

A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

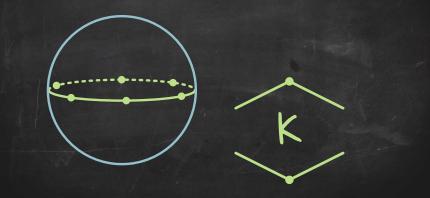
PRIMA 2017 6/17

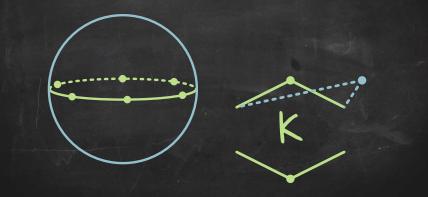
For any polytope \mathcal{K} , there is always a trivial extension

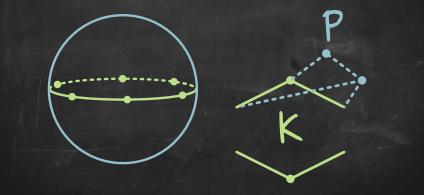
A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 1/17







* If \mathcal{K} is an *n*-polytope and \mathcal{P} is an extension of \mathcal{K} we say that \mathcal{P} is of type $\{\mathcal{K}, q\}$ if there are exactly q facets of \mathcal{P} around each of its (n-2)-faces.

* If \mathcal{K} is an *n*-polytope and \mathcal{P} is an extension of \mathcal{K} we say that \mathcal{P} is of type $\{\mathcal{K}, q\}$ if there are exactly q facets of \mathcal{P} around each of its (n-2)-faces.

* If \mathcal{K} is regular, this just a fancy name for the Schläfli type of \mathcal{P} .

- * If \mathcal{K} is an *n*-polytope and \mathcal{P} is an extension of \mathcal{K} we say that \mathcal{P} is of type $\{\mathcal{K}, q\}$ if there are exactly q facets of \mathcal{P} around each of its (n-2)-faces.
- * If \mathcal{K} is regular, this just a fancy name for the Schläfli type of \mathcal{P} .
- * The trivial extension of \mathcal{K} is of type $\{\mathcal{K}, 2\}$.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

- * If \mathcal{K} is an *n*-polytope and \mathcal{P} is an extension of \mathcal{K} we say that \mathcal{P} is of type $\{\mathcal{K}, q\}$ if there are exactly q facets of \mathcal{P} around each of its (n-2)-faces.
- * If \mathcal{K} is regular, this just a fancy name for the Schläfli type of \mathcal{P} .
- * The trivial extension of \mathcal{K} is of type $\{\mathcal{K}, 2\}$.

* Given \mathcal{K} , determine $q \in \mathbb{N} \cup \{\infty\}$ such that \mathcal{K} admits an extension of type $\{\mathcal{K}, q\}$.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

Regular extensions

In the context of regular extensions there are several results:

In the context of regular extensions there are several results:

* Schulte, 1983: Universal extension of type $\{\mathcal{K}, \infty\}$.

In the context of regular extensions there are several results:

* Schulte, 1983: Universal extension of type $\{\mathcal{K},\infty\}$.

* Schulte, 1983: Extension of type $\{\mathcal{K}, 6\}$.

- * Schulte, 1983: Universal extension of type $\{\mathcal{K}, \infty\}$.
- * Schulte, 1983: Extension of type $\{\mathcal{K}, 6\}$.
- * Danzer, 1984: Construction $2^{\mathcal{K}}$: extensions of type { $\mathcal{K}, 4$ }.

- * Schulte, 1983: Universal extension of type $\{\mathcal{K}, \infty\}$.
- * Schulte, 1983: Extension of type $\{\mathcal{K}, 6\}$.
- * Danzer, 1984: Construction $2^{\mathcal{K}}$: extensions of type { $\mathcal{K}, 4$ }.
- * Pellicer, 2010: Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}$.

- * Schulte, 1983: Universal extension of type $\{\mathcal{K}, \infty\}$.
- * Schulte, 1983: Extension of type $\{\mathcal{K}, 6\}$.
- * Danzer, 1984: Construction $2^{\mathcal{K}}$: extensions of type { $\mathcal{K}, 4$ }.
- * Pellicer, 2010: Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}$.
- * Pellicer, 2009: Construction $2s^{\mathcal{K}-1}$: extensions of type $\{\mathcal{K}, 2s\}$.

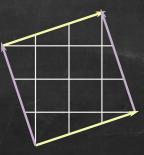
- * Schulte, 1983: Universal extension of type $\{\mathcal{K}, \infty\}$.
- * Schulte, 1983: Extension of type $\{\mathcal{K}, 6\}$.
- * Danzer, 1984: Construction $2^{\mathcal{K}}$: extensions of type { $\mathcal{K}, 4$ }.
- * Pellicer, 2010: Extensions of dually Bipartite polytopes. Type $\{\mathcal{K}, 2s\}$.
- * Pellicer, 2009: Construction $2s^{\mathcal{K}-1}$: extensions of type $\{\mathcal{K}, 2s\}$.
- * Harley, 2005: The hemicube $\{4,3\}/2$ does not have an extension of type $\{\{4,3\}/2,q\}$ with q odd.

Less symmetry?

A polytope \mathcal{K} is chiral if $\Gamma(\mathcal{K})$ has two orbits on flags and adjacent flags belong to different orbits.

Less symmetry?

A polytope \mathcal{K} is chiral if $\Gamma(\mathcal{K})$ has two orbits on flags and adjacent flags belong to different orbits.



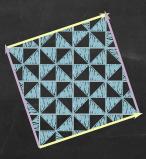
A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 10/17

Less symmetry?

A polytope \mathcal{K} is chiral if $\Gamma(\mathcal{K})$ has two orbits on flags and adjacent flags belong to different orbits.



Chiral polytopes in high ranks have been hard to find: * Schulte and Weiss, 1995: First infinite chiral polytopes of rank 5.

Chiral polytopes in high ranks have been hard to find:

* Schulte and Weiss, 1995: First infinite chiral polytopes of rank 5.

 Conder, Hubard and Pisanski, 2008: First example of finite chiral 5-polytope.

Chiral polytopes in high ranks have been hard to find:

* Schulte and Weiss, 1995: First infinite chiral polytopes of rank 5.

 Conder, Hubard and Pisanski, 2008: First example of finite chiral 5-polytope.

* Pellicer 2010: Chiral polytopes exist in every rank.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 11/17

Chiral polytopes in high ranks have been hard to find:

* Schulte and Weiss, 1995: First infinite chiral polytopes of rank 5.

 Conder, Hubard and Pisanski, 2008: First example of finite chiral 5-polytope.

* Pellicer 2010: Chiral polytopes exist in every rank.

* Conder, Hubard, O'Reilly and Pellicer, 2017?: Infinitely many chiral *n*-polytopes with simplicial facets, $n \ge 5$.

A. Montero (CCM UNAM) Chiral extensions of chiral polytopes

Proposition (Schulte and Weiss, 1991)

The facets of a chiral *n*-polytope are either chiral or regular. The (n-2)-faces of a chiral *n*-polytope are always regular.

Proposition (Schulte and Weiss, 1991)

The facets of a chiral *n*-polytope are either chiral or regular. The (n-2)-faces of a chiral *n*-polytope are always regular.

* If we want chiral extensions of \mathcal{K} , then \mathcal{K} must be regular or chiral with regular facets.

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 12/17

Proposition (Schulte and Weiss, 1991)

The facets of a chiral *n*-polytope are either chiral or regular. The (n-2)-faces of a chiral *n*-polytope are always regular.

* If we want chiral extensions of \mathcal{K} , then \mathcal{K} must be regular or chiral with regular facets.

* Any construction of chiral extensions cannot be applied recursively.

A. Montero (CCM UNAM) Chiral extensions of chiral polytopes

There are some results related to chiral extensions:

A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 13/17

There are some results related to chiral extensions:

* Schulte and Weiss, 1995: For any chiral polytope \mathcal{K} with regular facets there exist a universal chiral extension of type $\{\mathcal{K}, \infty\}$.

There are some results related to chiral extensions:

* Schulte and Weiss, 1995: For any chiral polytope \mathcal{K} with regular facets there exist a universal chiral extension of type $\{\mathcal{K}, \infty\}$.

* Cunningham and Pellicer, 2014: For any finite chiral polytope \mathcal{K} with regular facets there exist a finite chiral extension of type { \mathcal{K} , 2*m*} for some *m*.

There are some results related to chiral extensions:

- * Schulte and Weiss, 1995: For any chiral polytope \mathcal{K} with regular facets there exist a universal chiral extension of type $\{\mathcal{K}, \infty\}$.
- * Cunningham and Pellicer, 2014: For any finite chiral polytope \mathcal{K} with regular facets there exist a finite chiral extension of type { \mathcal{K} , 2*m*} for some *m*.

* Conder and Zhang, 2017: Abelian covers of chiral polytopes.

A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

We have some results regarding the type of some chiral extensions:

We have some results regarding the type of some chiral extensions:

* If \mathcal{K} is a dually Bipartite chiral polytope with regular facets and $m \in \mathbb{N}$, there exists a chiral extension of type $\{\mathcal{K}, q\}$ such that m|q.

Chiral extensions of chiral polytopes

We have some results regarding the type of some chiral extensions:

* If \mathcal{K} is a dually Bipartite chiral polytope with regular facets and $m \in \mathbb{N}$, there exists a chiral extension of type $\{\mathcal{K}, q\}$ such that m|q.

* Let \mathcal{K} be a chiral polytope with regular facets such that \mathcal{K} has a regular quotient with at least two facets. If \mathcal{K} admits a chiral extension of type $\{\mathcal{K}, q\}$, then \mathcal{K} has a chiral extension of type $\{\mathcal{K}, 2n * q\}$ for any $n \in \mathbb{N}$.

A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

* In 1994 Schulte and Weiss Built extensions of type $\{\{4,4\}_{(b,c)},3\}$ and $\{\{6,3\}_{(b,c)},3\}$ for certain chiral toroidal Maps $\{4,4\}_{(b,c)}$ and $\{6,3\}_{(b,c)}$

* In 1994 Schulte and Weiss Built extensions of type $\{\{4,4\}_{(b,c)},3\}$ and $\{\{6,3\}_{(b,c)},3\}$ for certain chiral toroidal maps $\{4,4\}_{(b,c)}$ and $\{6,3\}_{(b,c)}$

* Using the technique of mixing developed by Cunningham, Schulte, Breda, Jones... we were able to find extensions of type $\{\{4,4\}_{(b,c)},3\}$ and $\{\{6,3\}_{(b,c)},3\}$ for any chiral map $\{4,4\}_{(b,c)}$ and $\{6,3\}_{(b,c)}$, respectively.

* In 1994 Schulte and Weiss Built extensions of type $\{\{4,4\}_{(b,c)},3\}$ and $\{\{6,3\}_{(b,c)},3\}$ for certain chiral toroidal maps $\{4,4\}_{(b,c)}$ and $\{6,3\}_{(b,c)}$

* Using the technique of mixing developed by Cunningham, Schulte, Breda, Jones... we were able to find extensions of type $\{\{4,4\}_{(b,c)},3\}$ and $\{\{6,3\}_{(b,c)},3\}$ for any chiral map $\{4,4\}_{(b,c)}$ and $\{6,3\}_{(b,c)}$, respectively.

* Using our results, given $n \in \mathbb{N}$, we can built extensions of type $\{\{4, 4\}_{(b,c)}, 6n\}$ and for almost any toroidal map $\{4, 4\}_{(b,c)}$ and extensions of type $\{\{6, 3\}_{(b,c)}, 6n\}$ for almost any map of type $\{6, 3\}_{(b,c)}$.

Questions/work

* Find constructions that give us concrete types of chiral extensions.

Questions/work

* Find constructions that give us concrete types of chiral extensions.

* Chiral extensions of regular polytopes:

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 16/17

Questions/work

* Find constructions that give us concrete types of chiral extensions.

* Chiral extensions of regular polytopes:

- do they always exist?

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 16/17

Questions/work

* Find constructions that give us concrete types of chiral extensions.

* Chiral extensions of regular polytopes:

- do they always exist?

- can we say something about their type?

A. Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2017 16/17

Thank you for your attention!

A Montero (CCM UNAM)

Chiral extensions of chiral polytopes

PRIMA 2011 11/17