Cubic toroids with few flac-orbits

Antonio Montero

Joint work with José Collins
Centro de Ciencias Matemáticas National University of México

> Seminar of Combinatorics and Group Teory Faculty of Education University of LjuBljana

> February, 2017

Maps

Maps

Maps

Maps
 how to Generalize to higher dimensions?

* Not obvious...

Maps how to Generalize to higher dimensions?

* Not obvious...
* Combinatorial (algebraic) generalizations:
- Abstract polytopes.
- Maniplexes.

Maps how to generalize to higher dimensions?

* Not obvious...
* Combinatorial (algebraic) generalizations:
- Abstract polytopes.
- Maniplexes.
* They lose the topolocical (Geometric) spirit of a map...

Maps

Theorem (Geometrization)
Every surface \mathcal{S} is homeomorphic to X / Λ where $X \in\left\{S^{2}, \mathbb{H}^{2}, \mathbb{E}^{2}\right\}$ and Λ is a discrete, fixed-point free group of isometries of X.

Maps

Theorem (Geometrization)
Every surface \mathcal{S} is homeomorphic to X / Λ where $X \in\left\{S^{2}, \mathbb{H}^{2}, \mathbb{E}^{2}\right\}$ and Λ is a discrete, fixed-point free Group of isometries of X.

A map \mathcal{M} on $S=X / \Lambda$ induces a tesellation U of X such that Λ is a Group of symmetries of \mathcal{U}.

Maps

Theorem (Geometrization)
Every surface \mathcal{S} is homeomorphic to X / Λ where $X \in\left\{S^{2}, \mathbb{H}^{2}, \mathbb{E}^{2}\right\}$ and Λ is a discrete, fixed-point free Group of isometries of X.

A map \mathcal{M} on $S=X / \Lambda$ induces a tesellation U of X such that Λ is a croup of symmetries of \mathcal{U}.

If $X \rightarrow S$ is the quotient map, then

* $\{$ Vertices of $\mathcal{U}\} \rightarrow\{$ Vertices of $\mathcal{M}\}$.

Maps

Theorem (Geometrization)
Every surface \mathcal{S} is homeomorphic to X / Λ where $X \in\left\{S^{2}, \mathbb{H}^{2}, \mathbb{E}^{2}\right\}$ and Λ is a discrete, fixed-point free Group of isometries of X.

A map \mathcal{M} on $S=X / \Lambda$ induces a tesellation U of X such that Λ is a croup of symmetries of \mathcal{U}.

If $X \rightarrow S$ is the quotient map, then

* $\{$ Vertices of $\mathcal{U}\} \rightarrow\{$ Vertices of $\mathcal{M}\}$.
* \{Edges of $\mathcal{U}\} \rightarrow\{$ Edges of $\mathcal{M}\}$.

Maps

Theorem (Geometrization)
Every surface \mathcal{S} is homeomorphic to X / Λ where $X \in\left\{\mathbb{S}^{2}, \mathbb{H}^{2}, \mathbb{E}^{2}\right\}$ and Λ is a discrete, fixed-point free group of isometries of X.

A map \mathcal{M} on $S=X / \Lambda$ induces a tesellation U of X such that Λ is a croup of symmetries of \mathcal{U}.

If $X \rightarrow S$ is the quotient map, then

* $\{$ Vertices of $\mathcal{U}\} \rightarrow\{$ Vertices of $\mathcal{M}\}$.
* $\{$ Edges of $\mathcal{U}\} \rightarrow\{$ Edges of $\mathcal{M}\}$.
* $\{$ Faces of $\mathcal{U}\} \rightarrow\{$ Faces of $\mathcal{M}\}$.

Maps

Maps

Maps

Toroids

An n-dimensional toroid is the quotient of a tesselation \mathcal{U} of \mathbb{E}^{n} By a full rank lattice group $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

Toroids

An n-dimensional toroid is the quotient of a tesselation \mathcal{U} of \mathbb{E}^{n} By a full rank lattice Group $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

A toroid \mathcal{U} / Λ is cusic if \mathcal{U} is the cuBic tessellation of \mathbb{E}^{n}.

Toroids

An n-dimensional toroid is the quotient of a tesselation \mathcal{U} of \mathbb{E}^{n} By a full rank lattice Group $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

A toroid \mathcal{U} / Λ is cusic if \mathcal{U} is the cuBic tessellation of \mathbb{E}^{n}.

* Vertices of \mathcal{U} / Λ : OrBits of vertices of \mathcal{U} under Λ.

Toroids

An n-dimensional toroid is the quotient of a tesselation \mathcal{U} of \mathbb{E}^{n} By a full rank lattice Group $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

A toroid \mathcal{U} / Λ is cuBic if \mathcal{U} is the cuBic tessellation of \mathbb{E}^{n}.

* Vertices of \mathcal{U} / Λ : Orbits of vertices of \mathcal{U} under Λ.
* Edges of \mathcal{U} / Λ : Orbits of edges of \mathcal{U} under Λ.

Toroids

An n-dimensional toroid is the quotient of a tesselation \mathcal{U} of \mathbb{E}^{n} By a full rank lattice Group $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

A toroid \mathcal{U} / Λ is cuBic if \mathcal{U} is the cuBic tessellation of \mathbb{E}^{n}.

* Vertices of \mathcal{U} / Λ : Orbits of vertices of \mathcal{U} under Λ. * Edges of \mathcal{U} / Λ : Orbits of edges of \mathcal{U} under Λ.
* ...

Symmetries?

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preserving \mathcal{U}.

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flacs: $\left(F_{0}, \ldots, F_{n}\right)$.

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut(U): isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flacs: $\left(F_{0}, \ldots, F_{n}\right)$.
- May Be thought as simplices...

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut(U): isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preservina \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preservina \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...
- Aut (\mathcal{U}) acts freely on flags.

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut (\mathcal{U}) : isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...
- Aut (\mathcal{U}) acts freely on flags.
- \mathcal{U} is regular if $\operatorname{Aut}(\mathcal{U})$ is transitive on flags.

Symmetries?

* Of a tesselation \mathcal{U} of \mathbb{E}^{n} :
- Aut(U): isometries of \mathbb{E}^{n} preserving \mathcal{U}.
- Flags: $\left(F_{0}, \ldots, F_{n}\right)$.
- May be thought as simplices...
- Aut (\mathcal{U}) acts freely on flags.
- \mathcal{U} is regular if $\operatorname{Aut}(\mathcal{U})$ is transitive on flacs.
- The cubic tesselation
 is reqular.

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We better use the tesselation..

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We better use the tesselation..

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We better use the tesselation..

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We Better use the tesselation..

* This occurs if and only if $S^{\prime} \in \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)$.

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We better use the tesselation..

* This occurs if and only if $S \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* The elements of Λ act trivially on \mathcal{U} / Λ.

Symmetries of toroids

* The "usual" definition autromorphisms of maps do not extend to toroids naturally.
* We better use the tesselation..

* This occurs if and only if $S^{\prime} \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* The elements of Λ act trivially on \mathcal{U} / Λ.
* It makes sense to define

$$
\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda) / \Lambda .
$$

Symmetries of toroids

* Flacs of \mathcal{U} / Λ : orbits of flacs of \mathcal{U} under Λ.

Symmetries of toroids

* Flacs of \mathcal{U} / Λ : orbits of flacs of \mathcal{U} under Λ.
* $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda) / \Lambda$ acts freely on flacs of \mathcal{U}.

Symmetries of toroids

* Flags of \mathcal{U} / Λ : orbits of flags of \mathcal{U} under Λ.
* $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda) / \Lambda$ acts freely on flacs of \mathcal{U}.
* A toroid is regular if $\operatorname{Aut}(\mathcal{U} / \Lambda)$ acts transitively on flacs.

Symmetries of toroids

* Flags of \mathcal{U} / Λ : orbits of flags of \mathcal{U} under Λ.
* $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda) / \Lambda$ acts freely on flacs of \mathcal{U}.
* A toroid is regular if $\operatorname{Aut}(\mathcal{U} / \Lambda)$ acts transitively on flacs.

Assume \mathcal{U} is regular...

Symmetries of toroids

* Flags of \mathcal{U} / Λ : orbits of flacs of \mathcal{U} under Λ.
* $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda) / \Lambda$ acts freely on flacs of \mathcal{U}.
* A toroid is regular if $\operatorname{Aut}(\mathcal{U} / \Lambda)$ acts transitively on flacs.

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ recular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ regular?

Symmetries of toroids

Assume \mathcal{U} is regular...
... is every toroid \mathcal{U} / Λ recular?

Problem:
 Classify (cusic) toroids up to symmetry type.

What do we know?

What do we know?

* Regular cubic toroids are classified:
- If $n=2$ there are two families. (Coxeter, 1948)
- If $n \geqslant 3$ there are three families. (McMullen and Schulte, 1996)

What do we know?

* Recular cubic toroids are classified:
- If $n=2$ there are two families. (Coxeter, 1948)
- If $n \geqslant 3$ there are three families. (McMullen and Schulte, 1996)
* Chiral cubic toroids are classified, they only exist in dimension 2 (chiral maps). (Hartley, McMullen and Schulte, 1999)

What do we know?

What about higher dimensions?

What do we know?

What about higher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008, Hußard, OrBanic, Pellicer and Weiss, 2012)

What do we know?

What about hicher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008, Hußard, OrBanic, Pellicer and Weiss, 2012)
* Toroids of dimension three are classified (Hubard, OrBanic, Pellicer and Weiss, 2O12)

What do we know?

What about hicher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008, Hußard, OrBanic, Pellicer and Weiss, 2012)
* Toroids of dimension three are classified (HuBard, OrBanic, Pellicer and Weiss, 2O12)
- Corollary: There are no 2-orBit, cusic 3-dimensional toroids.

What do we know?

What about hicher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008, Hußard, OrBanic, Pellicer and Weiss, 2012)
* Toroids of dimension three are classified (HuBard, OrBanic, Pellicer and Weiss, 2O12)
- Corollary: There are no 2-orBit, cusic 3-dimensional toroids.
- Q: Can we classify 2-orBit, cuBic, n-dimensional toroids?

What do we know?

What about hicher dimensions?

* Toroids of dimension two are classified (Brehm and Kühnel, 2008, Hußard, OrBanic, Pellicer and Weiss, 2012)
* Toroids of dimension three are classified (Hubard, OrBanic, Pellicer and Weiss, 2O12)
- Corollary: There are no 2-orBit, cusic 3-dimensional toroids.
- Q: Can we classify 2 -orBit, cubic, n-dimensional toroids?
- Q: Do they even exist if $n>3$?

Let's take a minute...

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$. * In the example, $\operatorname{Norm}_{\operatorname{Aut}}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm} \operatorname{Aut}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm}_{\operatorname{Aut}}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* Aut $(\mathcal{U})=T(\mathcal{U}) \rtimes S$ where S is the stabilizer of a vertex 0 .

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm}_{\operatorname{Aut}}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* Aut $(\mathcal{U})=T(\mathcal{U}) \rtimes S$ where S is the stabilizer of a vertex 0 .
* $s=t s^{\prime} \in \operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda)$ if and only if $s^{\prime} \in \operatorname{Norm}_{\text {Aut }}^{(\mathcal{U})}(\Lambda)$.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm}_{\operatorname{Aut}}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* Aut $(\mathcal{U})=T(\mathcal{U}) \rtimes S$ where S is the stabilizer of a vertex 0 .
* $s=t s^{\prime} \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$ if and only if $s^{\prime} \in \operatorname{Norm}_{\text {Aut }}^{(\mathcal{U})}(\Lambda)$.
* $s \in S$ normalizes Λ if and only if s preserves o Λ.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\text {Aut }(\mathcal{U})}(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm} \operatorname{Aut}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* Aut $(\mathcal{U})=T(\mathcal{U}) \rtimes S$ where S is the stabilizer of a vertex 0 .
* $s=t s^{\prime} \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$ if and only if $s^{\prime} \in \operatorname{Norm}_{\text {Aut }}^{(\mathcal{U})}(\Lambda)$.
* $s \in S$ normalizes Λ if and only if s preserves o Λ.
* -id : $x \mapsto-x$ always preserves o Λ.

Let's take a minute...

* Recall that $\operatorname{Aut}(\mathcal{U} / \Lambda)=\operatorname{Norm}_{\operatorname{Aut}}(\mathcal{U})(\Lambda) / \Lambda$.
* In the example, $\operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)=(\operatorname{Aut}(\mathcal{U}))^{+}$.
* If t is a translation of \mathcal{U}, then $t \in \operatorname{Norm}_{\text {Aut }}^{(\mathcal{U})}(\Lambda)$.
* $\operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S$ where S is the stabilizer of a vertex 0 .
* $s=t s^{\prime} \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$ if and only if $s^{\prime} \in \operatorname{Norm}_{\text {Aut }}(\mathcal{U})(\Lambda)$.
* $s \in S$ normalizes Λ if and only if s preserves o Λ.
* -id : $x \mapsto-x$ always preserves o Λ.
* $\mathcal{U} / \Lambda \cong \mathcal{U} / \Lambda^{\prime}$ if and only if Λ and Λ are conjuGate in $\operatorname{Aut}(\mathcal{U})$.
$\{$ Toroids $\} \rightarrow\left\{\begin{array}{c}N / \Lambda \\ \left.N \leqslant \begin{array}{c}\operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S \\ \langle T(\mathcal{U}),-i d\rangle \leqslant N\end{array}\right\}\end{array}\right.$
$\{$ Toroids $\} \rightarrow\left\{\begin{array}{c}N / \Lambda \\ \left.N \leqslant \begin{array}{c}\operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S \\ \langle T(\mathcal{U}),-i d\rangle \leqslant N\end{array}\right\}\end{array}\right.$
$\{$ Toroids $\} \rightarrow\left\{\begin{array}{c}N \leqslant \operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S \\ \langle T(\mathcal{U}),-i d\rangle=T(\mathcal{U}) \rtimes\langle-i d\rangle \leqslant N\end{array}\right\}$

$$
\begin{gathered}
\{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
N / \Lambda \\
N \leqslant \operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S \\
\langle T(\mathcal{U}),-i d\rangle \leqslant N
\end{array}\right\} \\
\{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
N \leqslant \operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \rtimes S \\
\langle T(\mathcal{U}),-i d\rangle=T(\mathcal{U}) \rtimes\langle-i d\rangle \leqslant N
\end{array}\right\}
\end{gathered}
$$

$\{$ Symetry type of toroids $\} \rightarrow\left\{\begin{array}{c}\text { Conjugacy classes of } \\ \langle-i d\rangle \leqslant N^{\prime} \leqslant S\end{array}\right\}$

$$
\begin{gathered}
\{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
N / \Lambda \\
N \leqslant \operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \times S \\
\langle T(\mathcal{U}),-i d\rangle \leqslant N
\end{array}\right\} \\
\{\text { Toroids }\} \rightarrow\left\{\begin{array}{c}
N \leqslant \operatorname{Aut}(\mathcal{U})=T(\mathcal{U}) \times S \\
\langle T(\mathcal{U}),-i d\rangle=T(\mathcal{U}) \rtimes\langle-i d\rangle \leqslant N
\end{array}\right\}
\end{gathered}
$$

$\{$ Symetry type of toroids $\} \longrightarrow\left\{\begin{array}{c}\text { Conjugacy classes of } \\ \langle-i d\rangle \leqslant N^{\prime} \leqslant S\end{array}\right\}$

Number of flac-orsits $=[\operatorname{Aut}(\mathcal{U}): N]=\left[S: N^{\prime}\right]$

$\left\{\begin{array}{c}\text { Conjugacy classes of } \\ \langle-i d\rangle \leqslant N^{\prime} \leqslant S\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { Candidates for } \\ \text { automorphism Group }\end{array}\right\}$

$\left\{\begin{array}{c}\text { Conjugacy classes of } \\ \langle-i d\rangle \leqslant N^{\prime} \leqslant S\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { Candidates for } \\ \text { automorphism Group }\end{array}\right\}$

$$
\left\{\begin{array}{c}
\text { Conqujacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

$$
\left\{\begin{array}{c}
\text { Conjugacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism Group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Conqujacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.

$$
\left\{\begin{array}{c}
\text { Conjugacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism Group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Congujacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical

$$
\left\{\begin{array}{c}
\text { Conjugacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { Candidates for } \\
\text { automorphism Group }
\end{array}\right\}
$$

$$
\left\{\begin{array}{c}
\text { Conqujacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical, the Group S is HLIGE: $2^{n} n!$.

$\left\{\begin{array}{c}\text { Conjugacy classes of } \\ \langle-i d\rangle \leqslant N^{\prime} \leqslant S\end{array}\right\} \rightarrow\left\{\begin{array}{c}\text { Candidates for } \\ \text { automorphism Group }\end{array}\right\}$

$$
\left\{\begin{array}{c}
\text { Conqujacy classes of } \\
\langle-i d\rangle \leqslant N^{\prime} \leqslant S
\end{array}\right\} \Longrightarrow \begin{gathered}
\text { Classification } \\
\text { of toroids }
\end{gathered}
$$

Tow problems:

* It only solves half of the problem.
* Not practical, the Group S is HLIGE: $2^{n} n!$.
* Still useful...

Few-orbit cubic toroids

An n-dimensional toroid \mathcal{U} / Λ is a few-orsit toroid if the number of flag-orbits of $\operatorname{Aut}(\mathcal{U} / \Lambda)$ is at most n.

Few-orbit cubic toroids

An n-dimensional toroid \mathcal{U} / Λ is a few-orsit toroid if the number of flag-orbits of Aut (\mathcal{U} / Λ) is at most n.

* Regular toroids are few-orBit toroids.

Few-orbit cubic toroids

An n-dimensional toroid \mathcal{U} / Λ is a few-orsit toroid if the number of flag-orbits of Aut (\mathcal{U} / Λ) is at most n.

* Regular toroids are few-orBit toroids.
* 2-orBit n-dimensional toroids are few-orbit toroids.

Few-orbit cubic toroids

Classification

* Regular toroids.

Few-orbit cubic toroids
 Classification

* Regular toroids.
* Two orBit toroids:
- If n is odd, there are no 2-orBit toroids.

Few-orbit cubic toroids
 Classification

* Regular toroids.
* Two orBit toroids:
- If n is odd, there are no 2-orBit toroids.
- If n is even, there exists one family in class $2\{1,2, \ldots, n-1\}$.

Few-orbit cubic toroids
 Classification

* Regular toroids.
* Two orBit toroids:
- If n is odd, there are no 2-orBit toroids.
- If n is even, there exists one family in class $2\{1,2, \ldots, n-1\}$.
* If $n=4$
- One family of 2 -orsit toroids in class $2_{\{1,2,3\}}$.

Few-orbit cubic toroids
 Classification

* Regular toroids.
* Two orBit toroids:
- If n is odd, there are no 2-orBit toroids.
- If n is even, there exists one family in class $2\{1,2, \ldots, n-1\}$.
* If $n=4$
- One family of 2 -orsit toroids in class $2_{\{1,2,3\}}$.
- One family of 3-orbit toroids.

Few-orbit cubic toroids
 Classification

* Regular toroids.
* Two orBit toroids:
- If n is odd, there are no 2-orBit toroids.
- If n is even, there exists one family in class $2\{1,2, \ldots, n-1\}$.
* If $n=4$
- One family of 2 -orsit toroids in class $2_{\{1,2,3\}}$.
- One family of 3-orbit toroids.
* If $n \geqslant 5$, there are no cubic toroids with k orbits if $2<k<n$.

Few-orbit cubic toroids Classification

* Regular toroids.
* Two orbit toroids:
- If n is odd, there are no 2-orBit toroids.
- If n is even, there exists one family in class $2_{\{1,2, \ldots, n-1\}}$.
* If $n=4$
- One family of 2 -orBit toroids in class $2_{\{1,2,3\}}$.
- One family of 3-orbit toroids.
* If $n \geqslant 5$, there are no cubic toroids with k orbits if $2<k<n$.
* For any $n \geqslant 4$ there are five families of n-orbit toroids.

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

* $n=2$: Consequence of the classification of HOPW, 2012

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

* $n=2$: Consequence of the classification of HOPW, 2012
* $n=4$:
- Regular toroids: two families.

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

* $n=2$: Consequence of the classification of HOPW, 2012
* $n=4$:
- Regular toroids: two families.
- 2-orbit toroids: one family in class $2_{\{3,4\}}$.

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

* $n=2$: Consequence of the classification of HOPW, 2012
* $n=4$:
- Regular toroids: two families.
- 2-orbit toroids: one family in class $2\{3,4\}$.
- 3-orbit toroids: two families with different symmetry type.

Note...

Few-orBit toroids induced By other recular tessellations of $\mathbb{E}^{n}(n=2, n=4)$ are also classified:

* $n=2$: Consequence of the classification of HOPW, 2012
* $n=4$:
- Regular toroids: two families.
- 2-orbit toroids: one family in class $2\{3,4\}$.
- 3-orbit toroids: two families with different symmetry type.
- 4-orBit toroids: none.

Open problems/Future

work

* Classify few-orbit toroids induced By non-regular tessellations.

Open problems/Future work

* Classify few-orbit toroids induced By non-regular tessellations.
* Study few-orBits structures in other Euclidean space forms.

Open problems/Future

work

* Classify few-orbit toroids induced By non-regular tessellations.
* Study few-orBits structures in other Euclidean space forms.
* Achieve a complete classification of (equivelar) toroids on arbitrary dimension.

Hvala!

