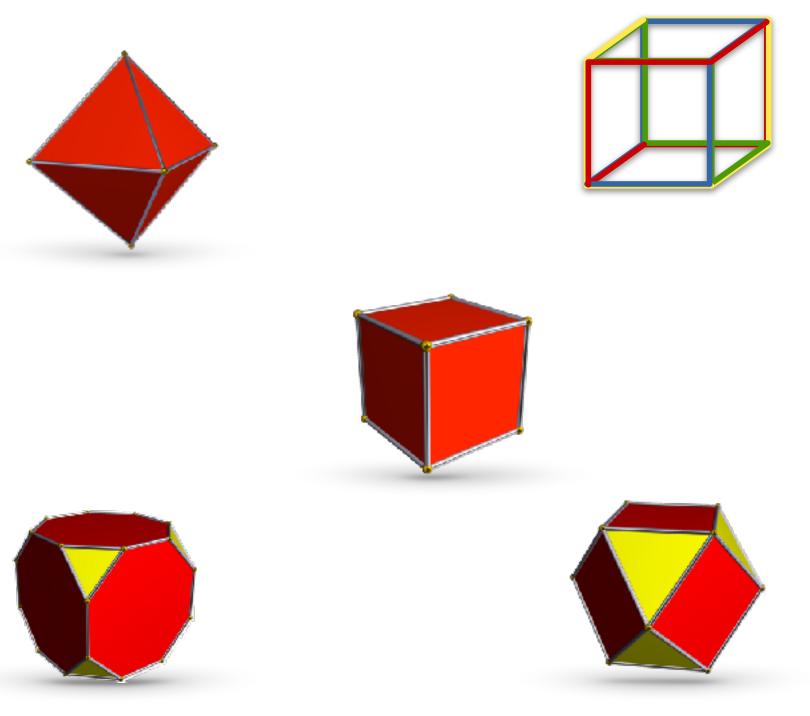
Symmetries of voltage operations on maniplexes and polytopes

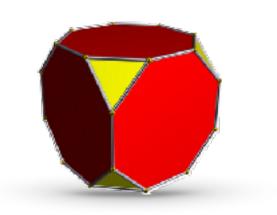
Antonio Montero University of Ljubljana

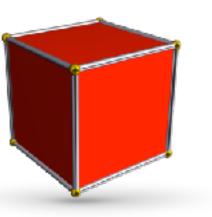
Based on joint work with Isabel Hubard and Elías Mochán

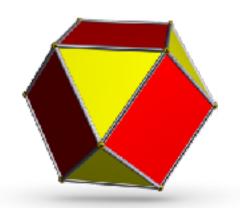
GEMS 2025: Graphs embeddings and Maps on Surfaces June 2025, Trenčianske Teplice, Slovakia

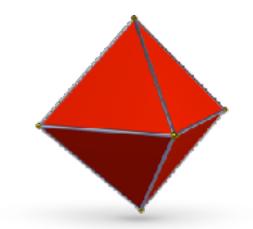


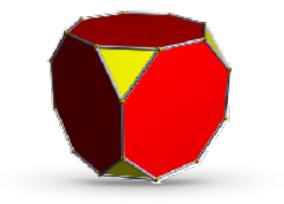
Symmetries of voltage operations on maniplexes and polytopes

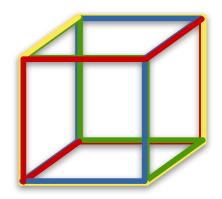


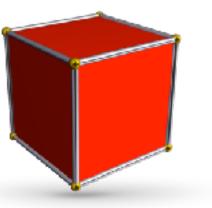


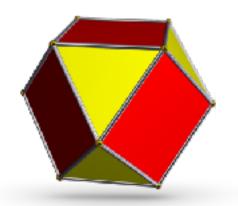


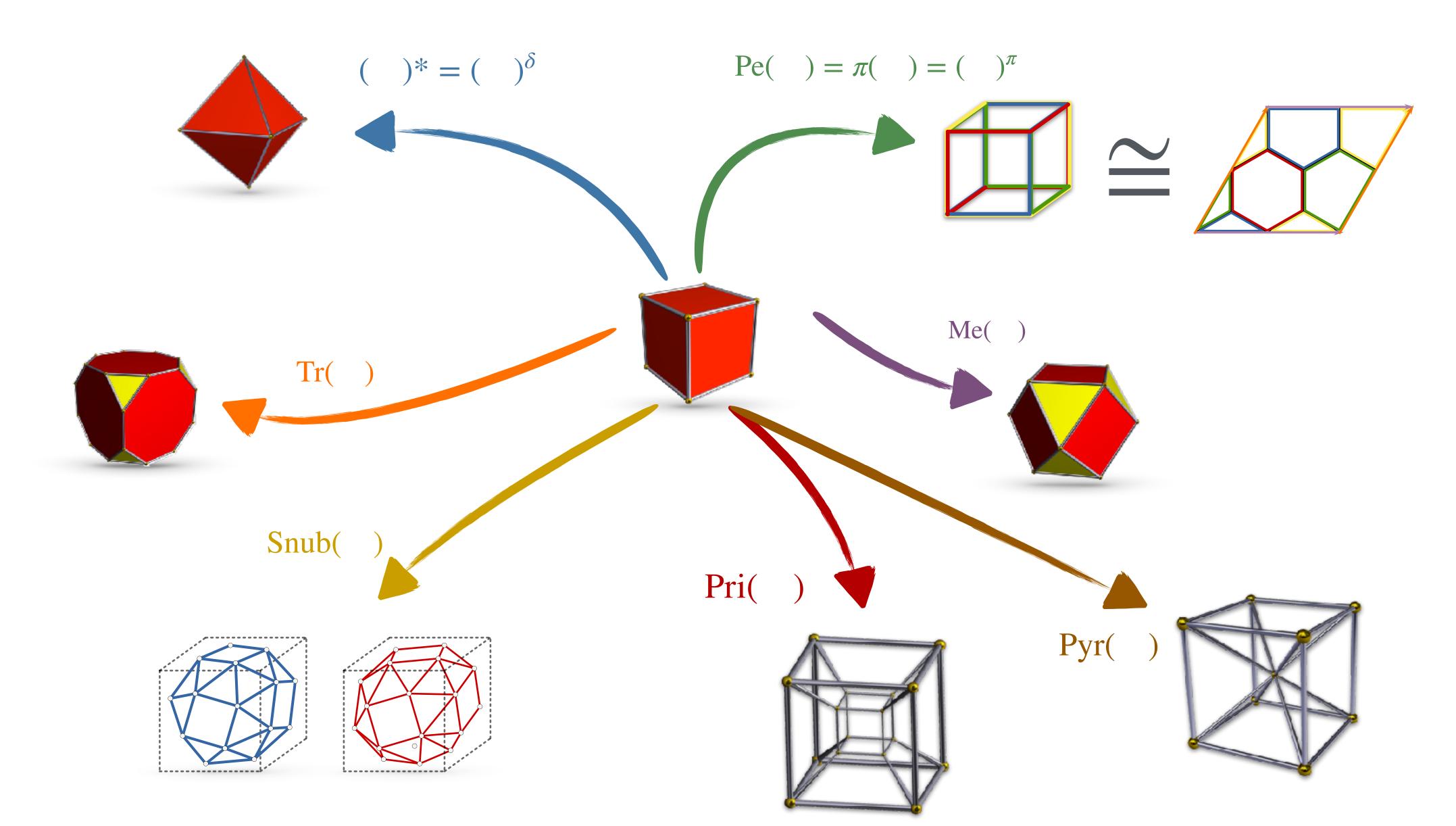


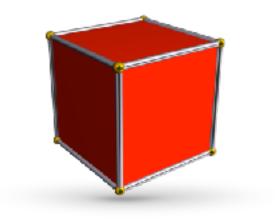


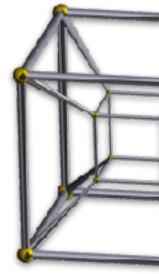


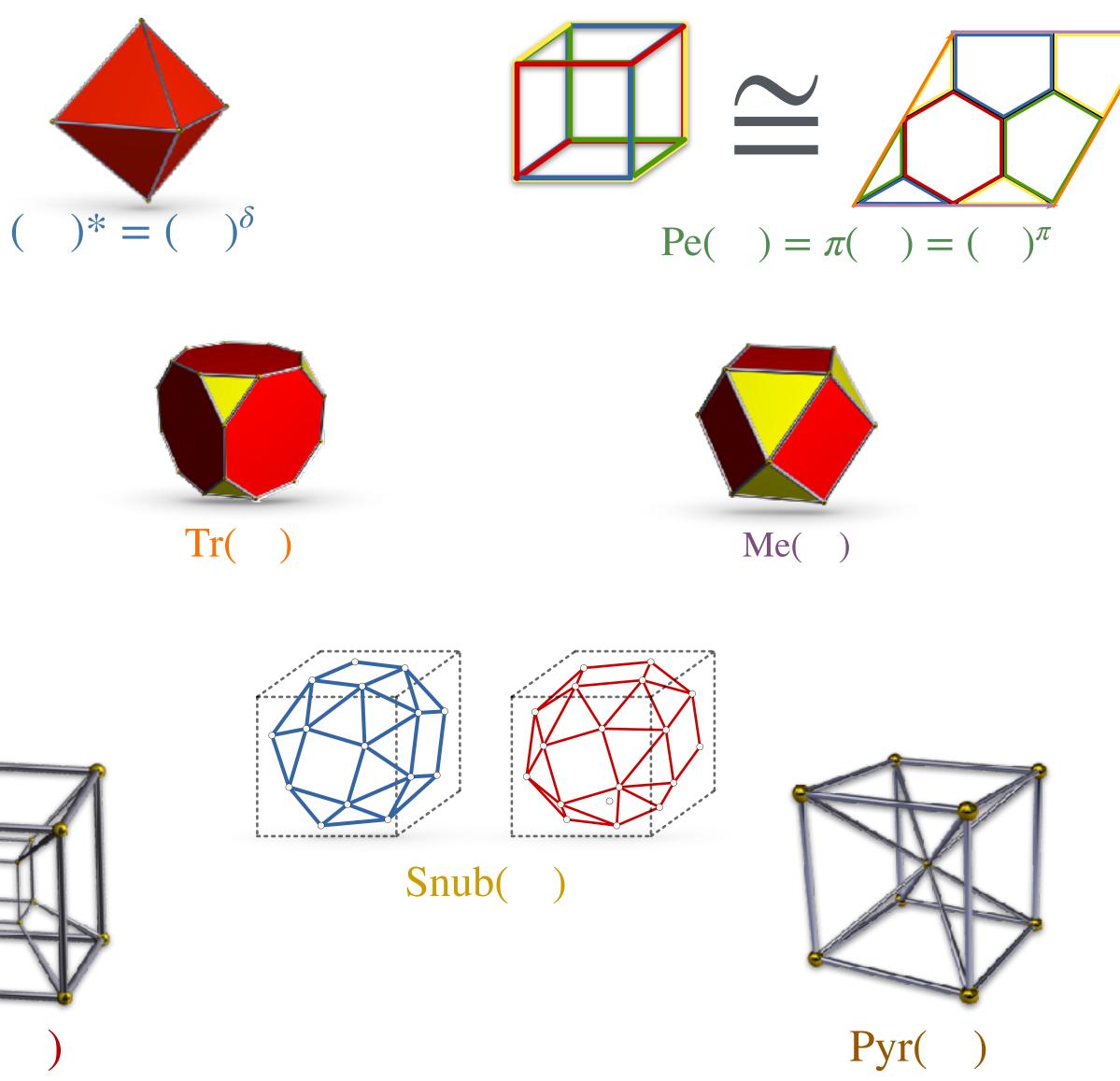


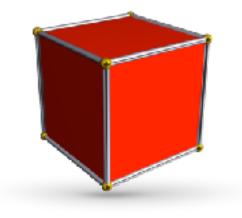




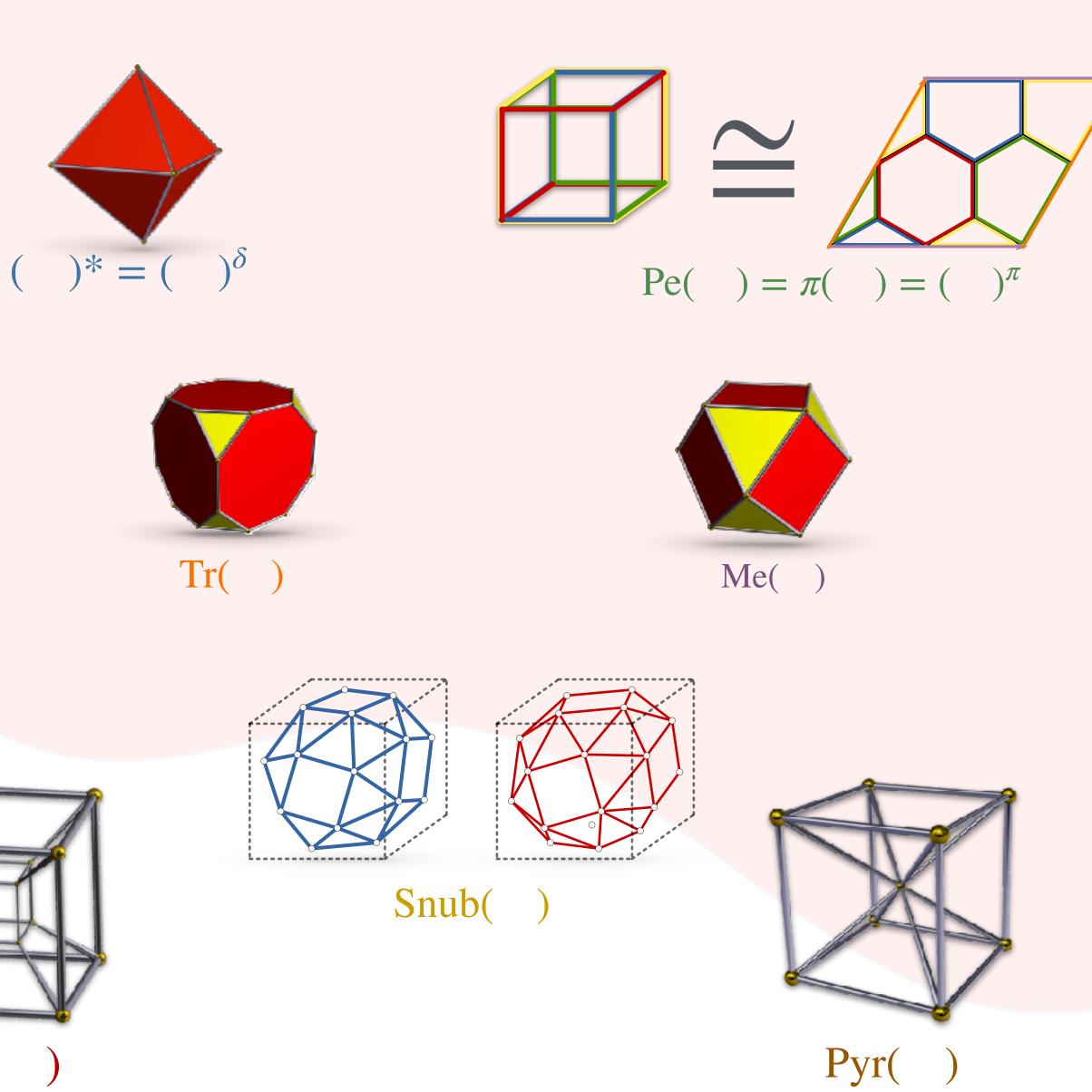


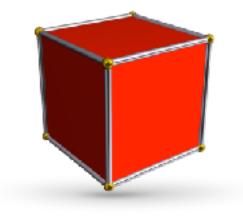




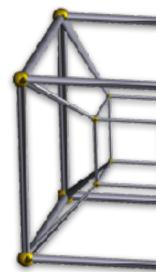


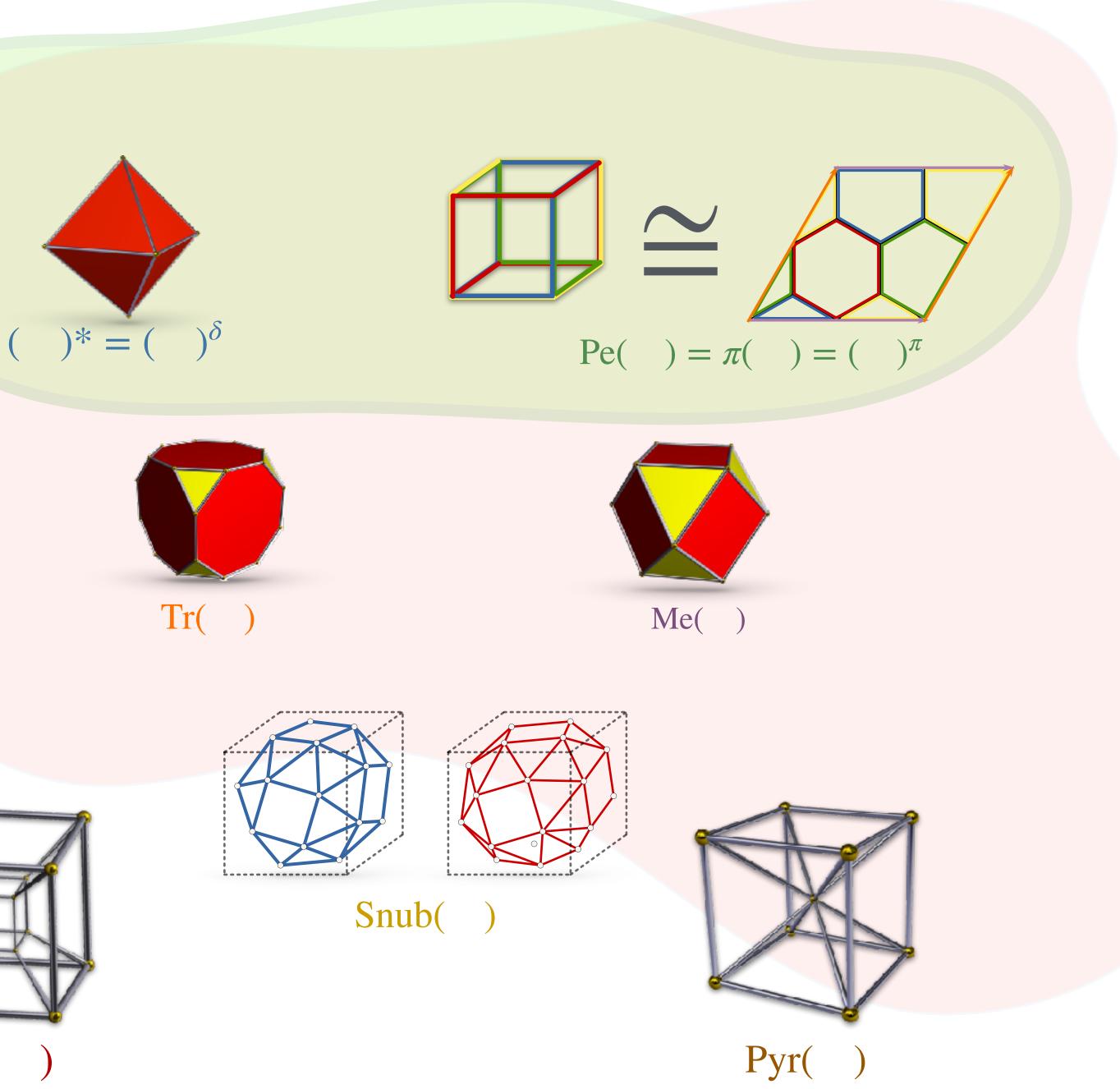
• Automorphism group

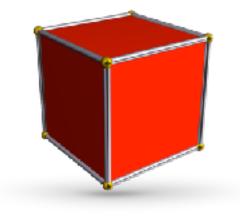




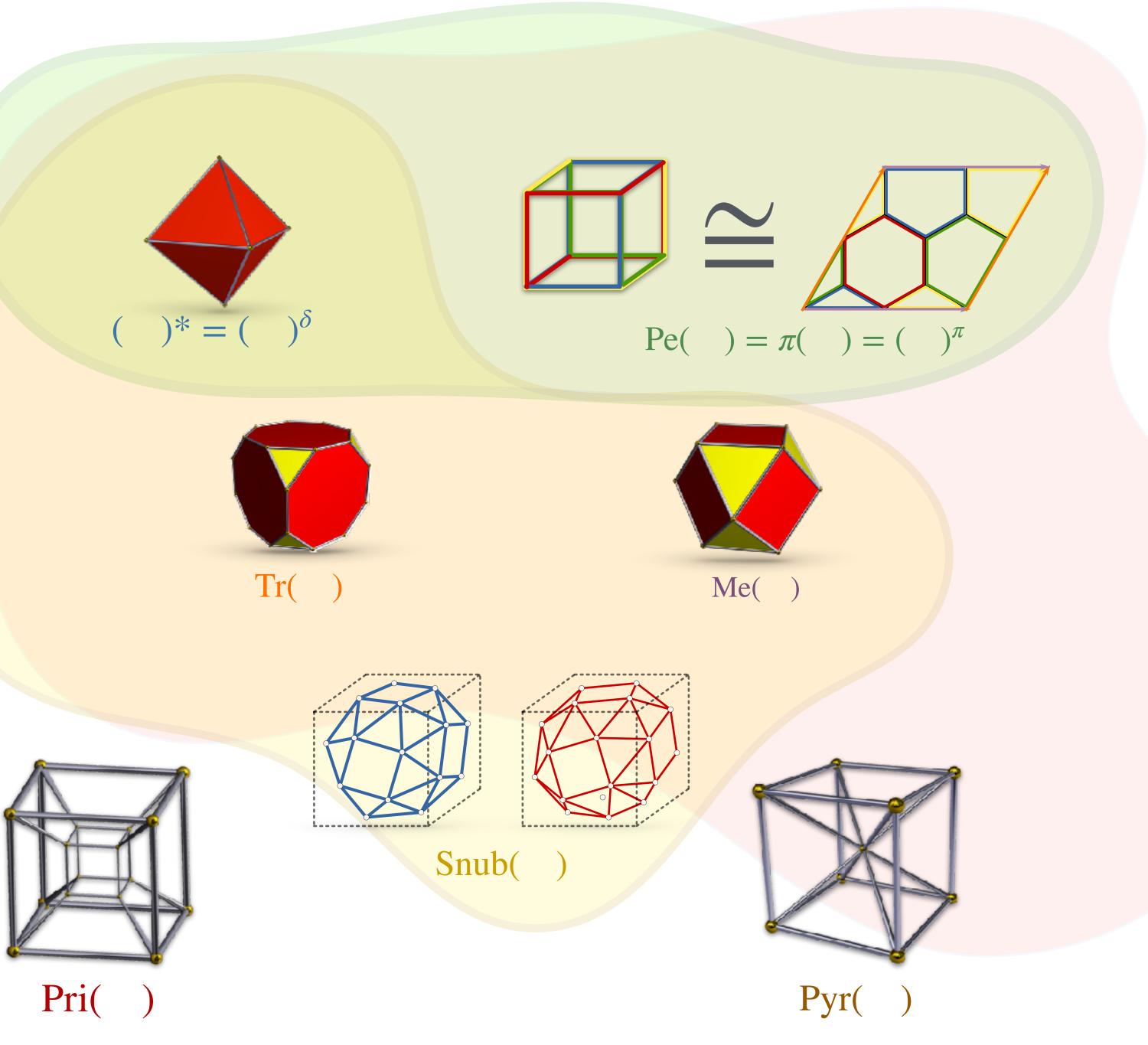
- Automorphism group
- Size (number of flags)

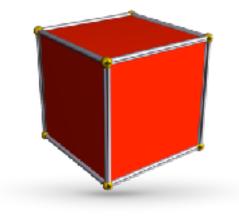




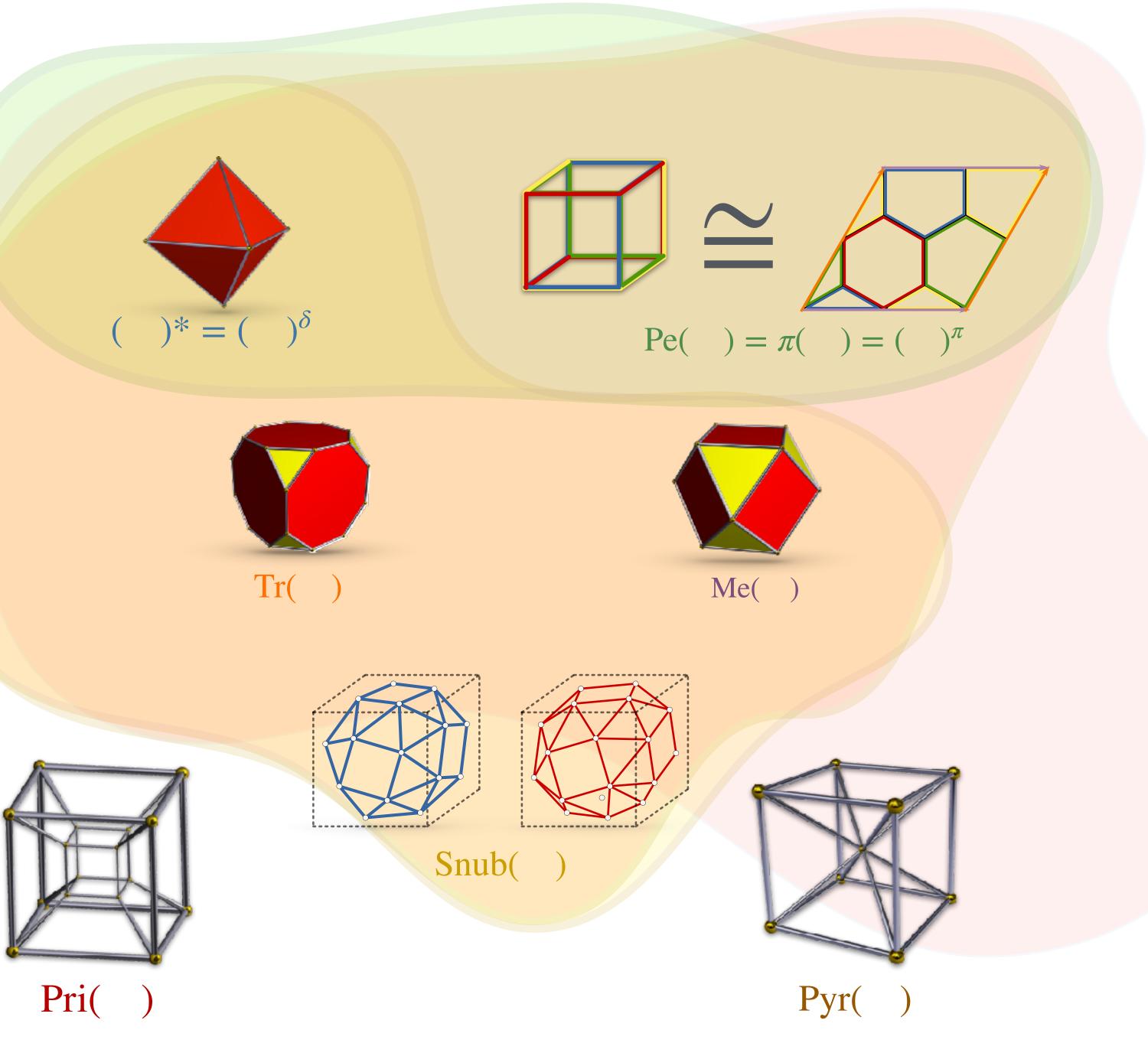


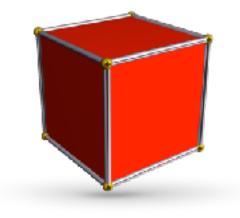
- Automorphism group
- Size (number of flags)
- Surface



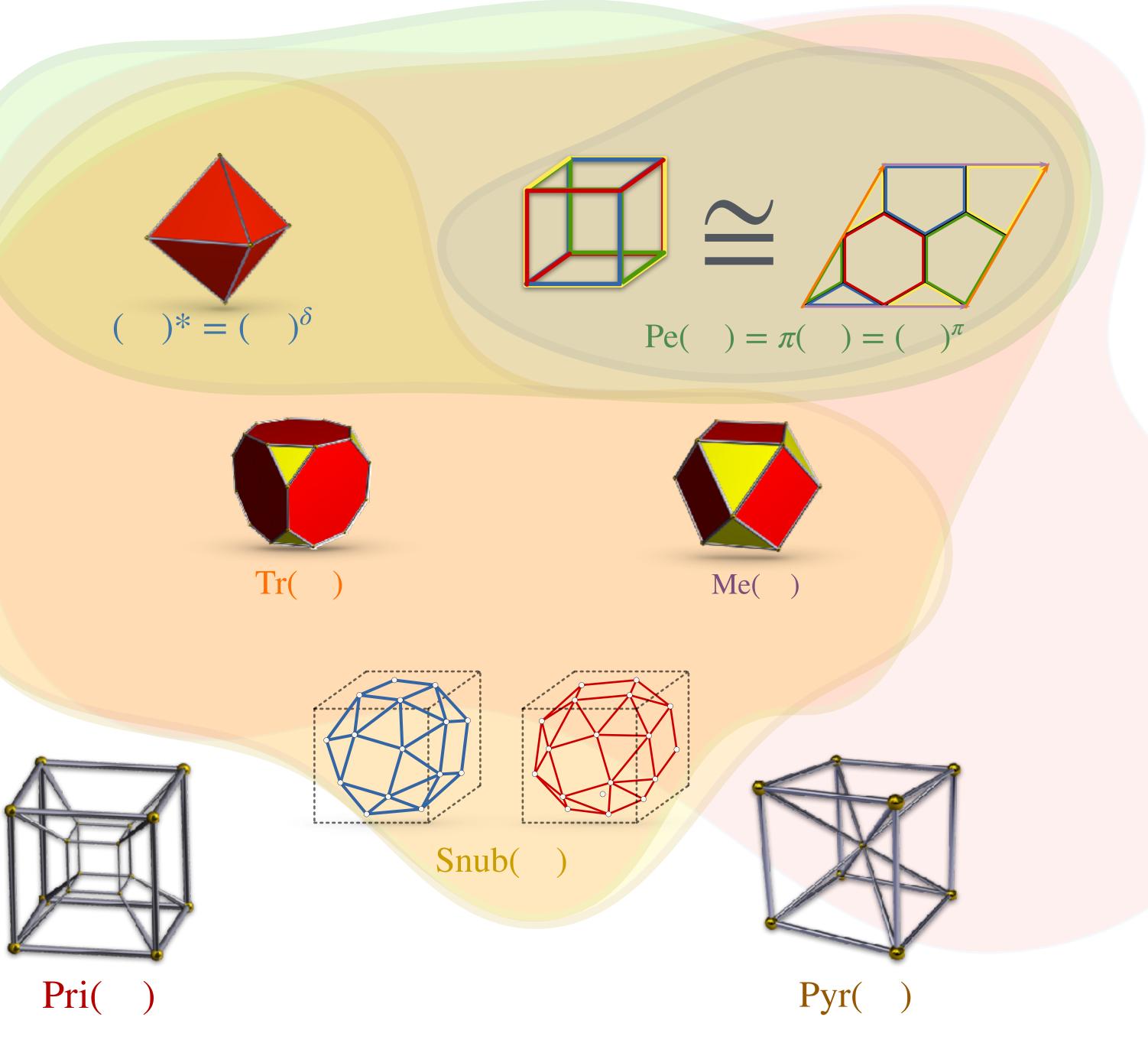


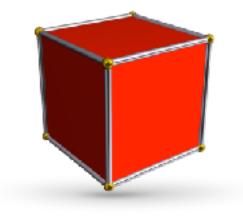
- Automorphism group
- Size (number of flags)
- Surface
- Rank (dimension)



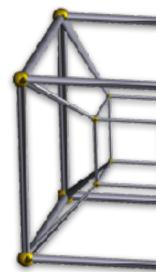


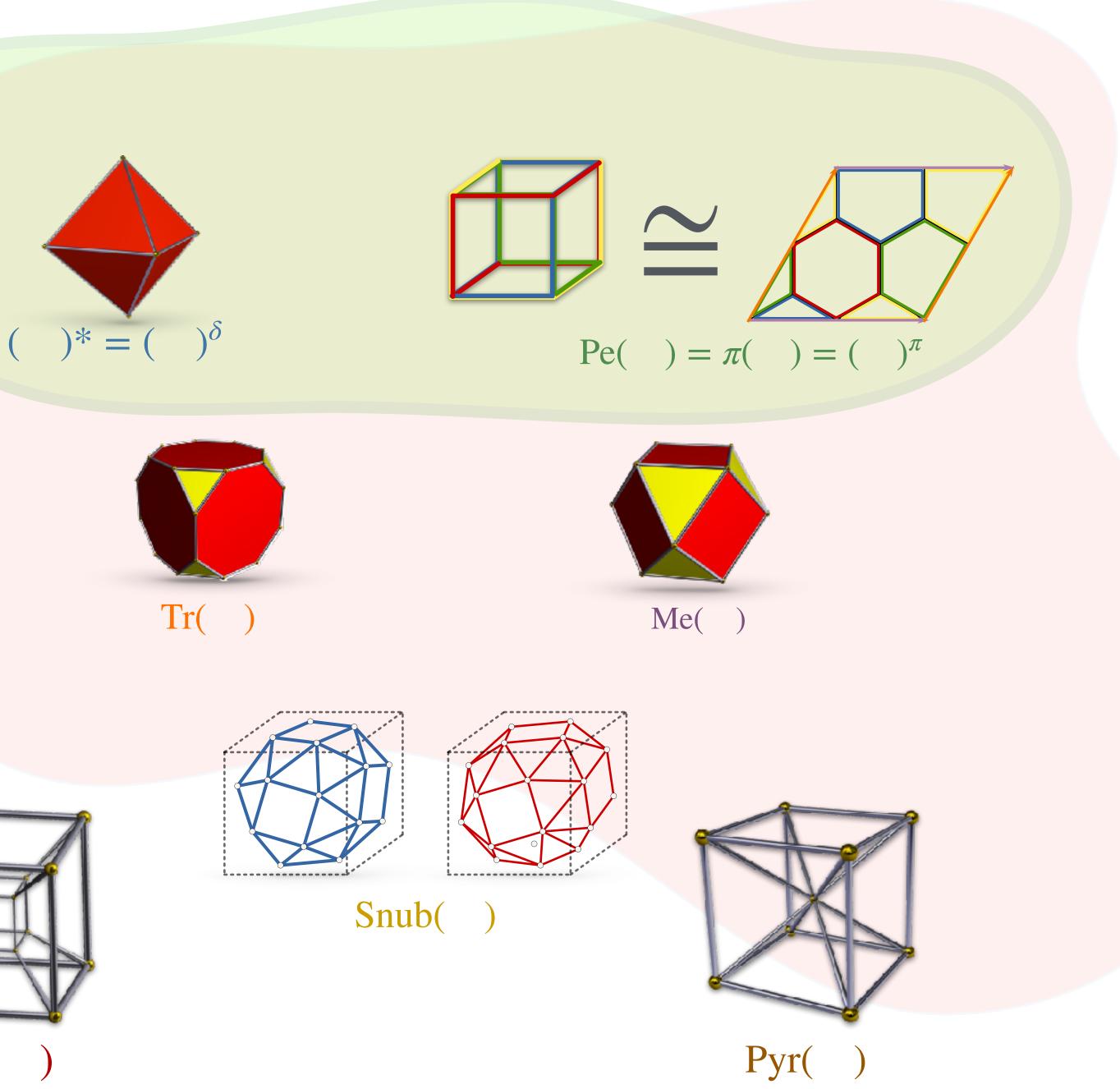
- Automorphism group
- Size (number of flags)
- Surface
- Rank (dimension)
- 1-skeleton





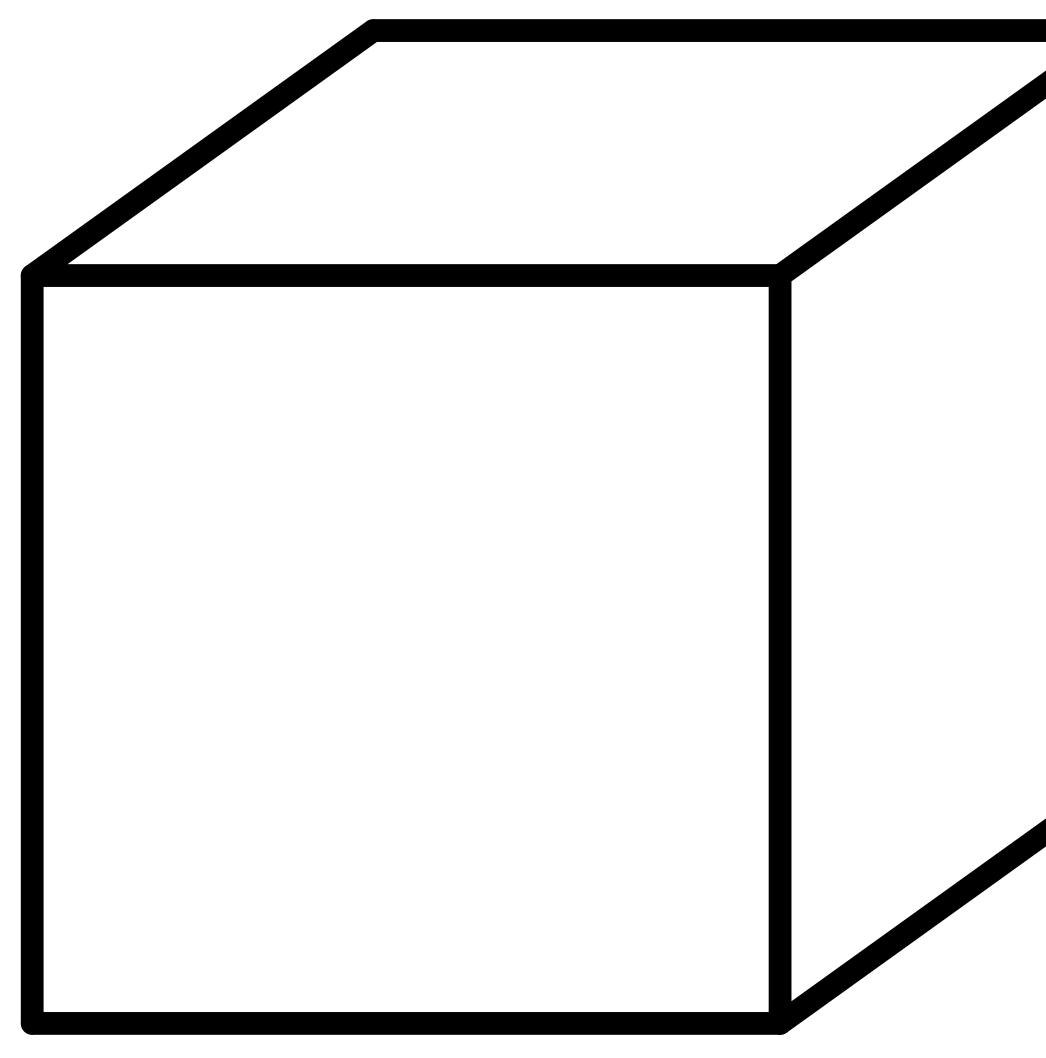
- Automorphism group
- Size (number of flags)

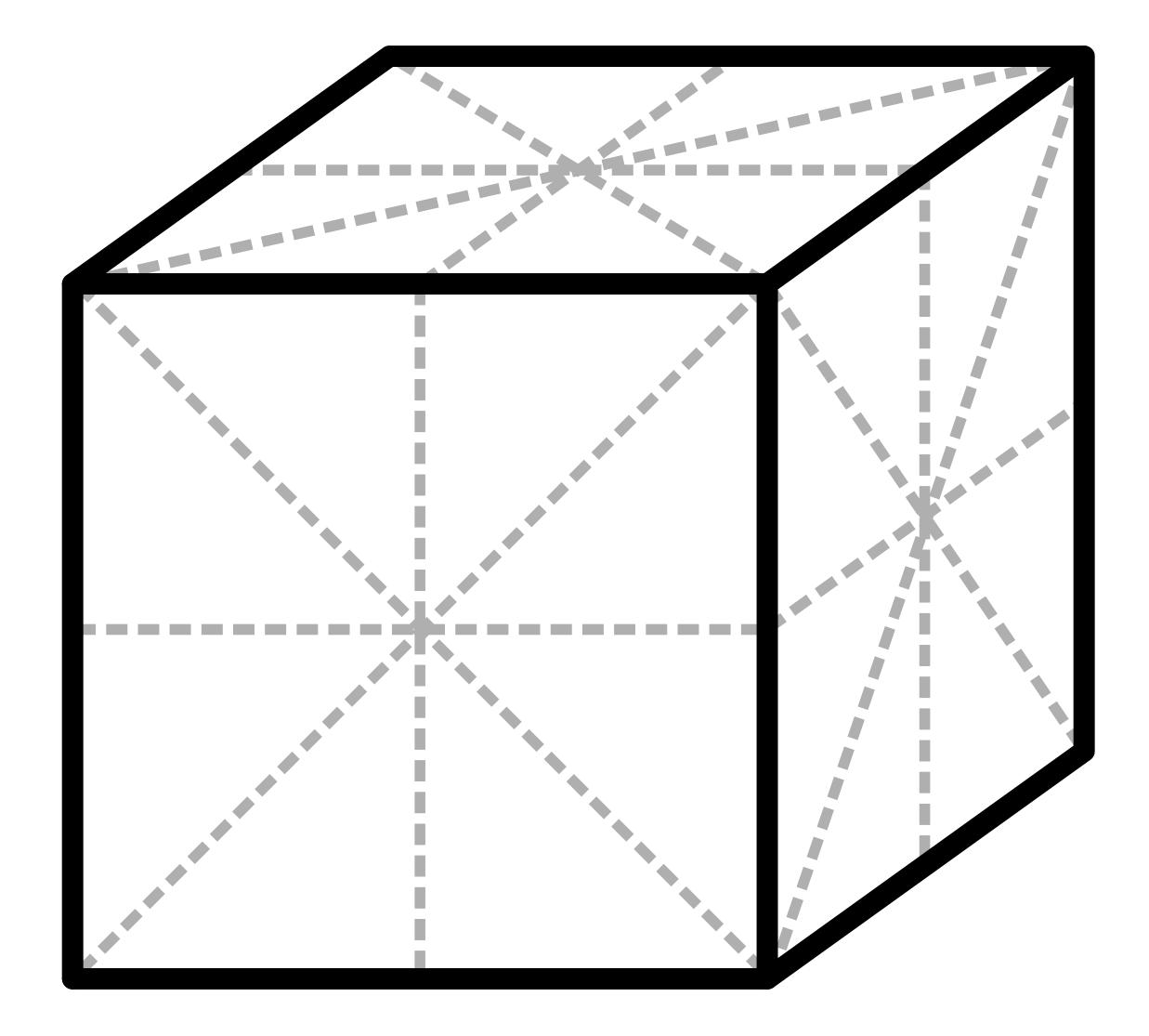


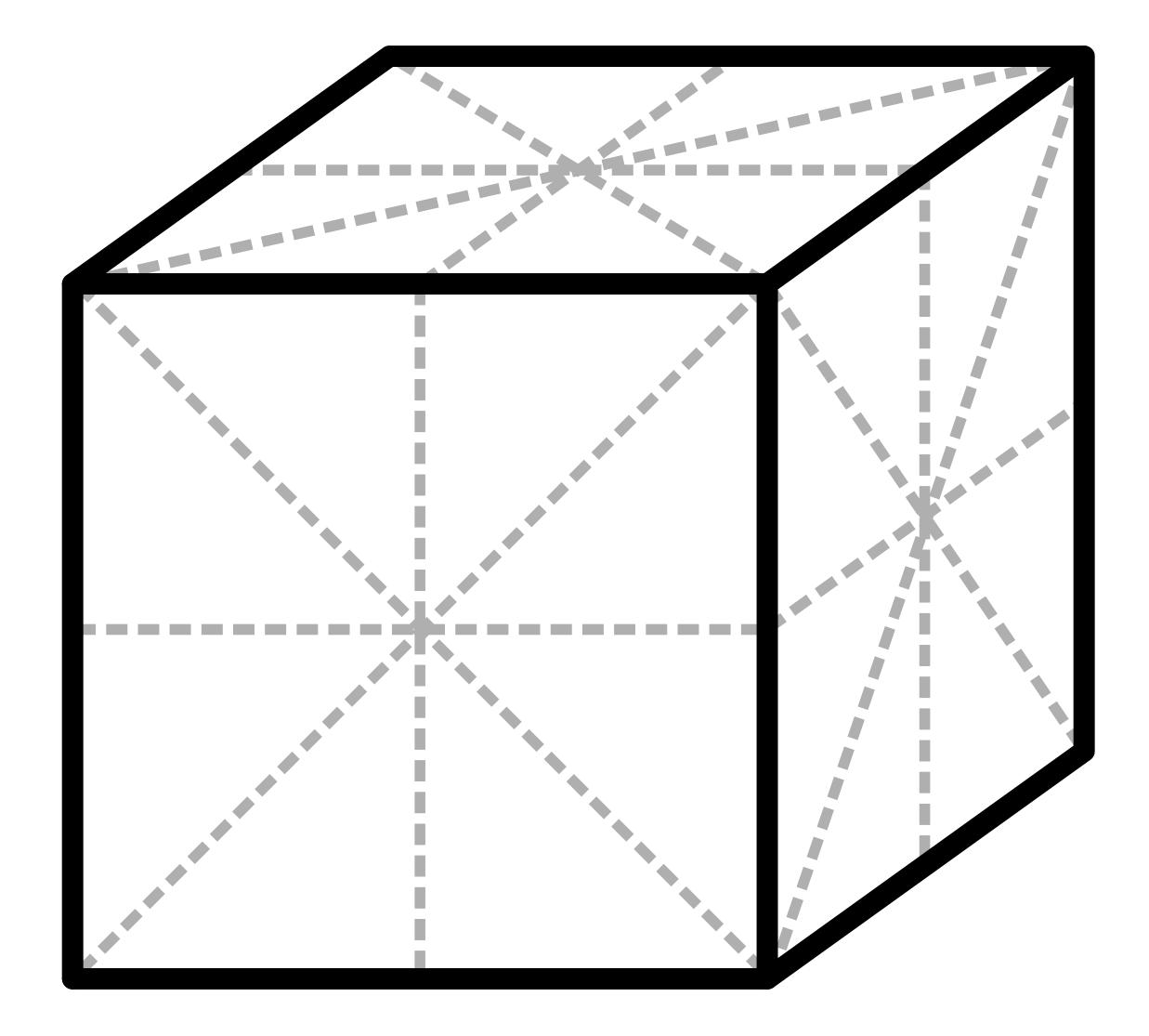


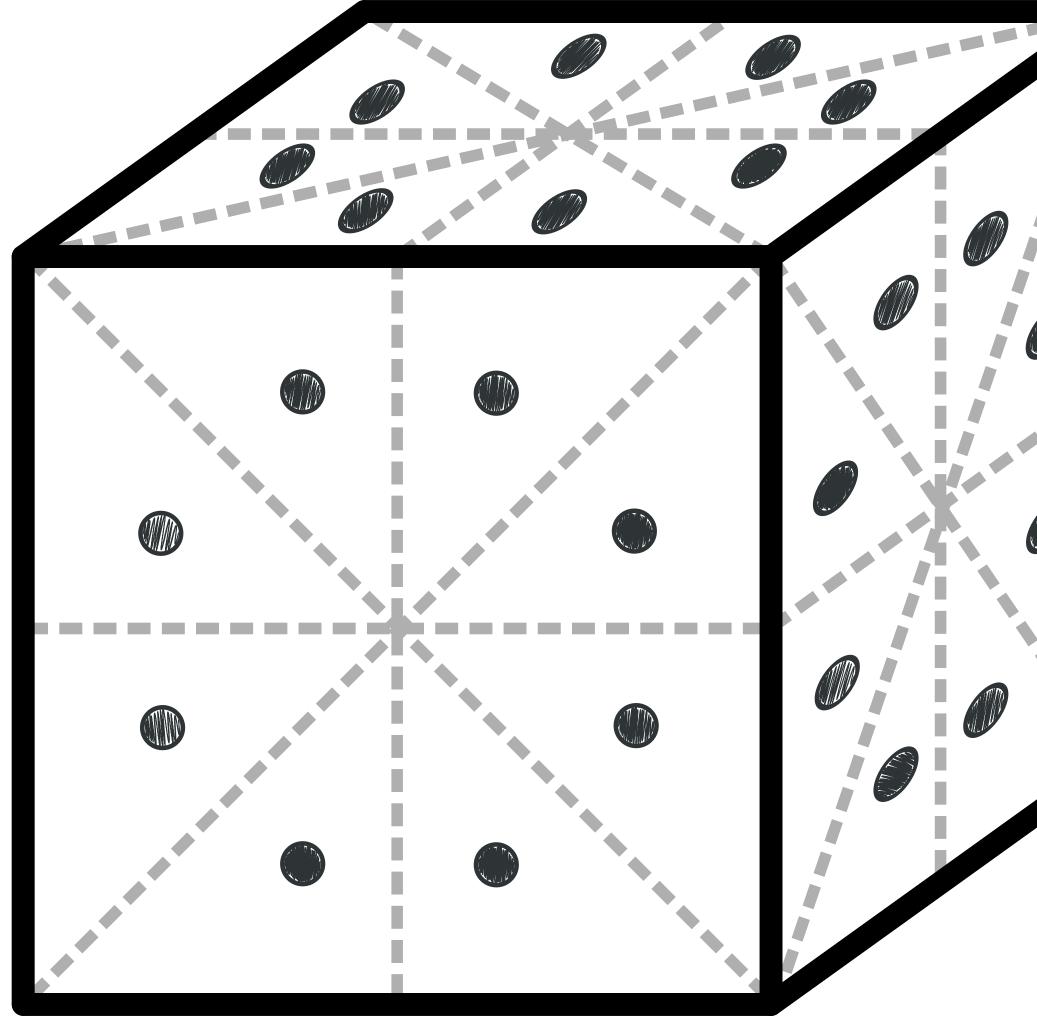
Symmetries of voltage operations on maniplexes and polytopes

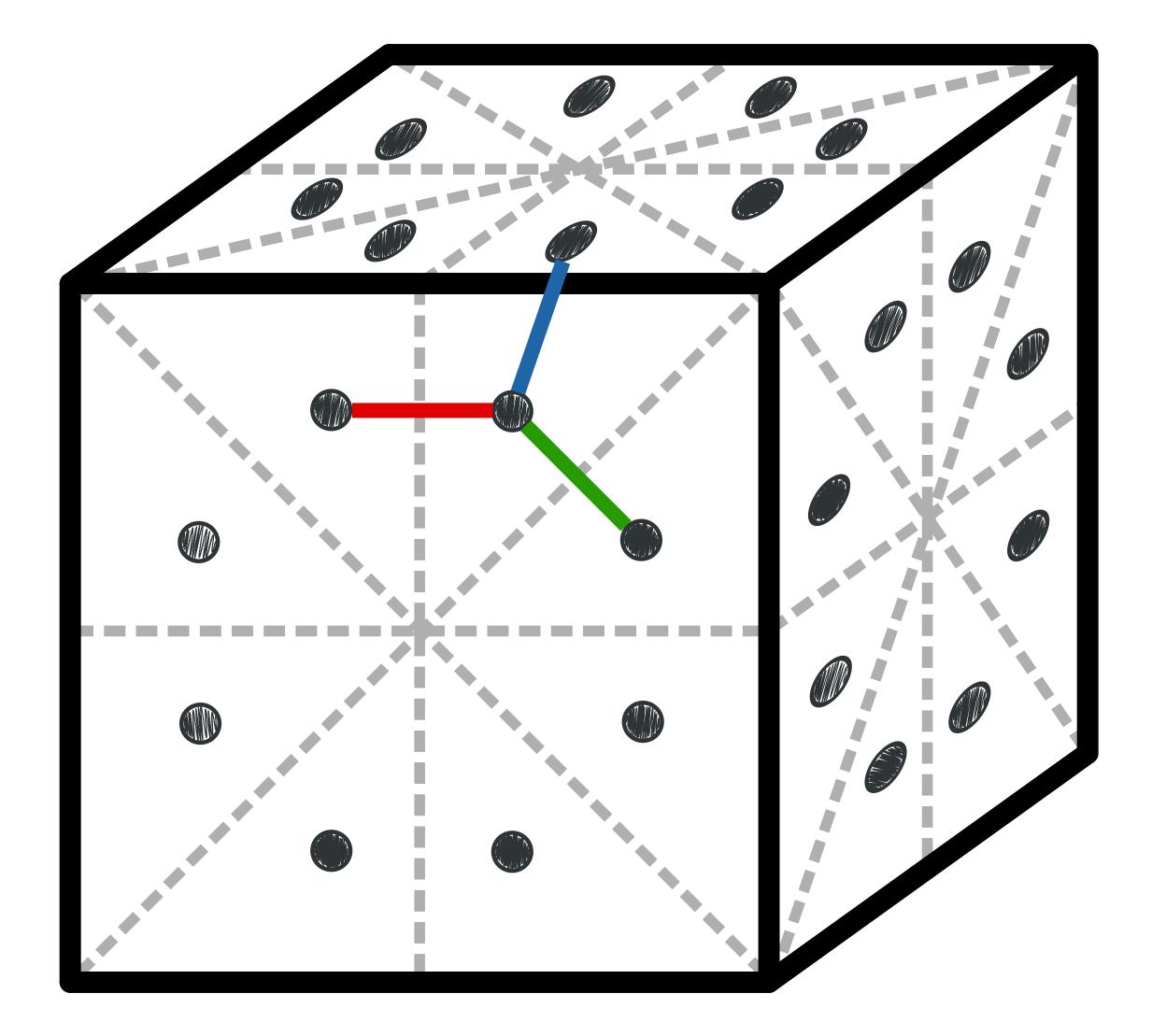
Symmetries of voltage operations on maniplexes and polytopes

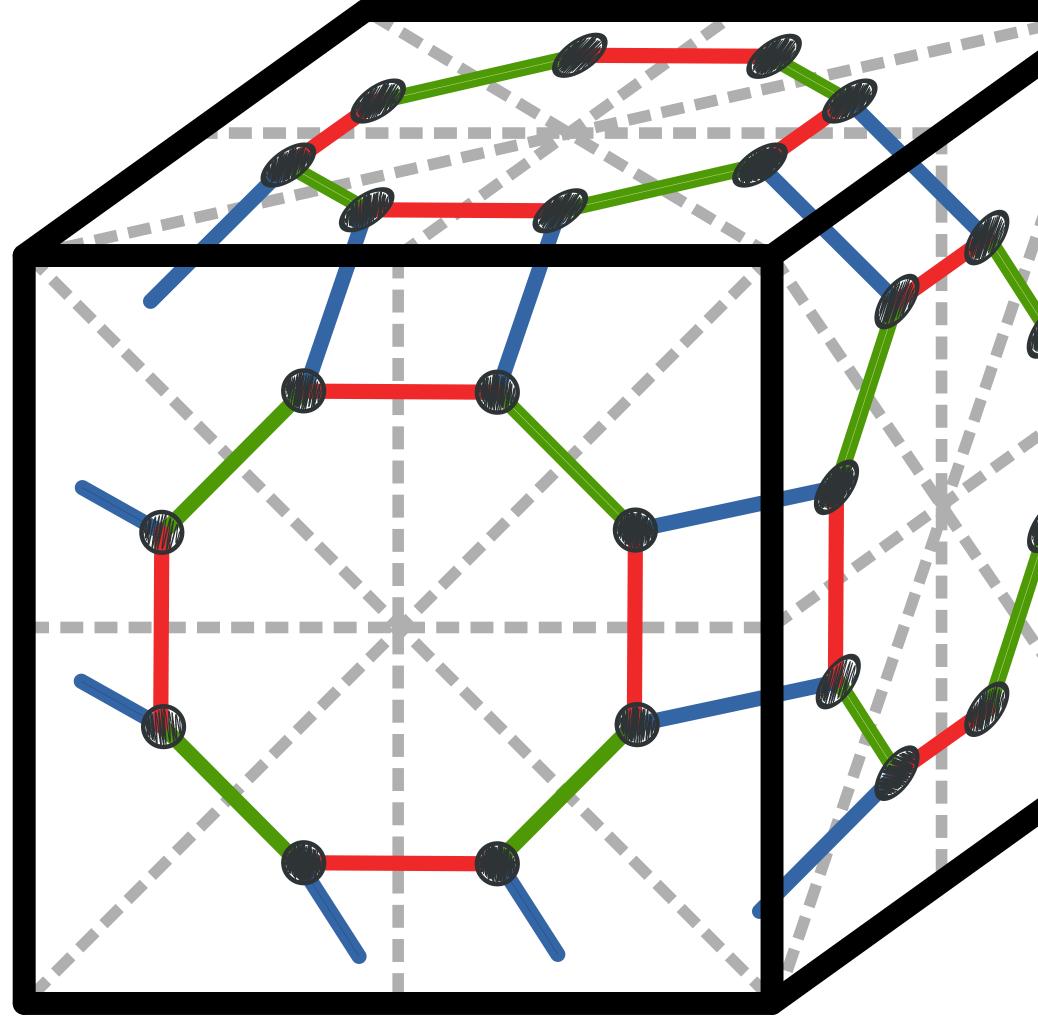






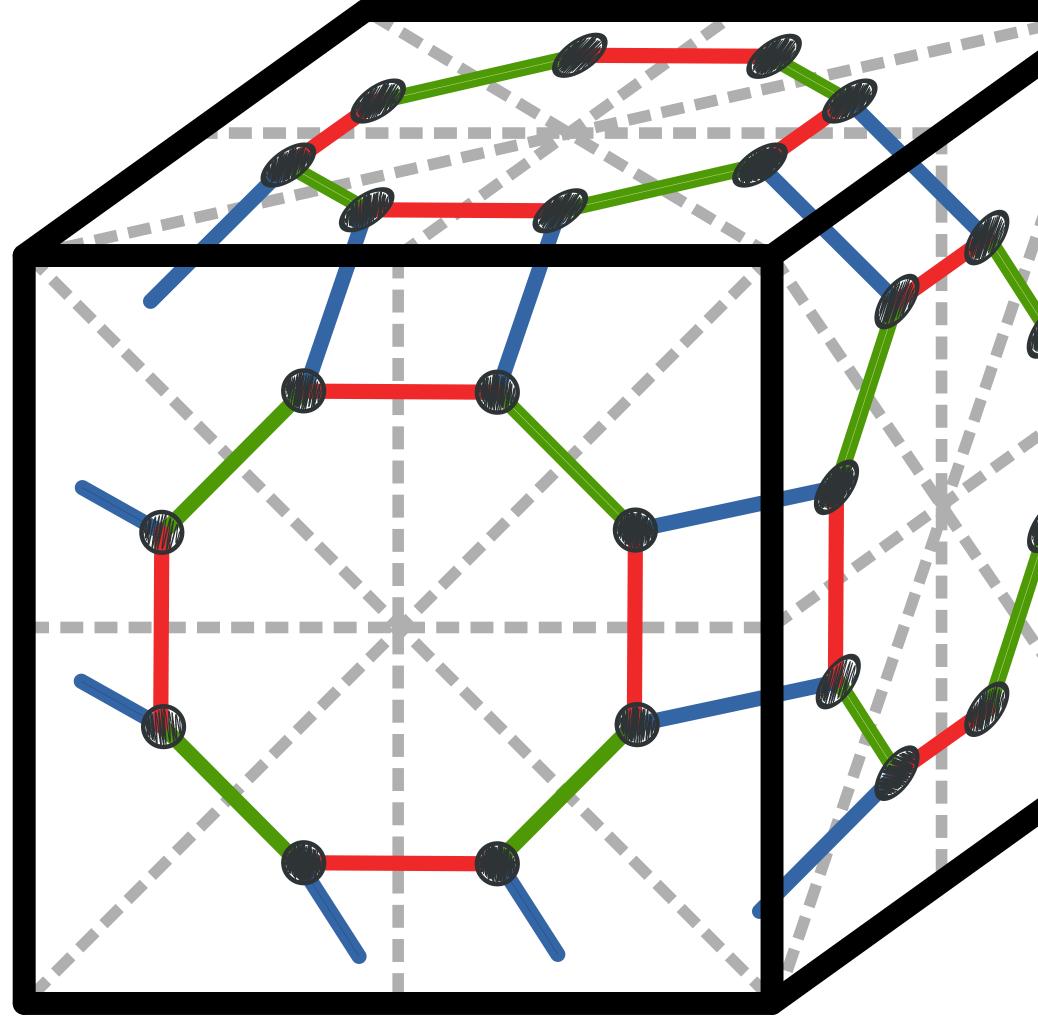






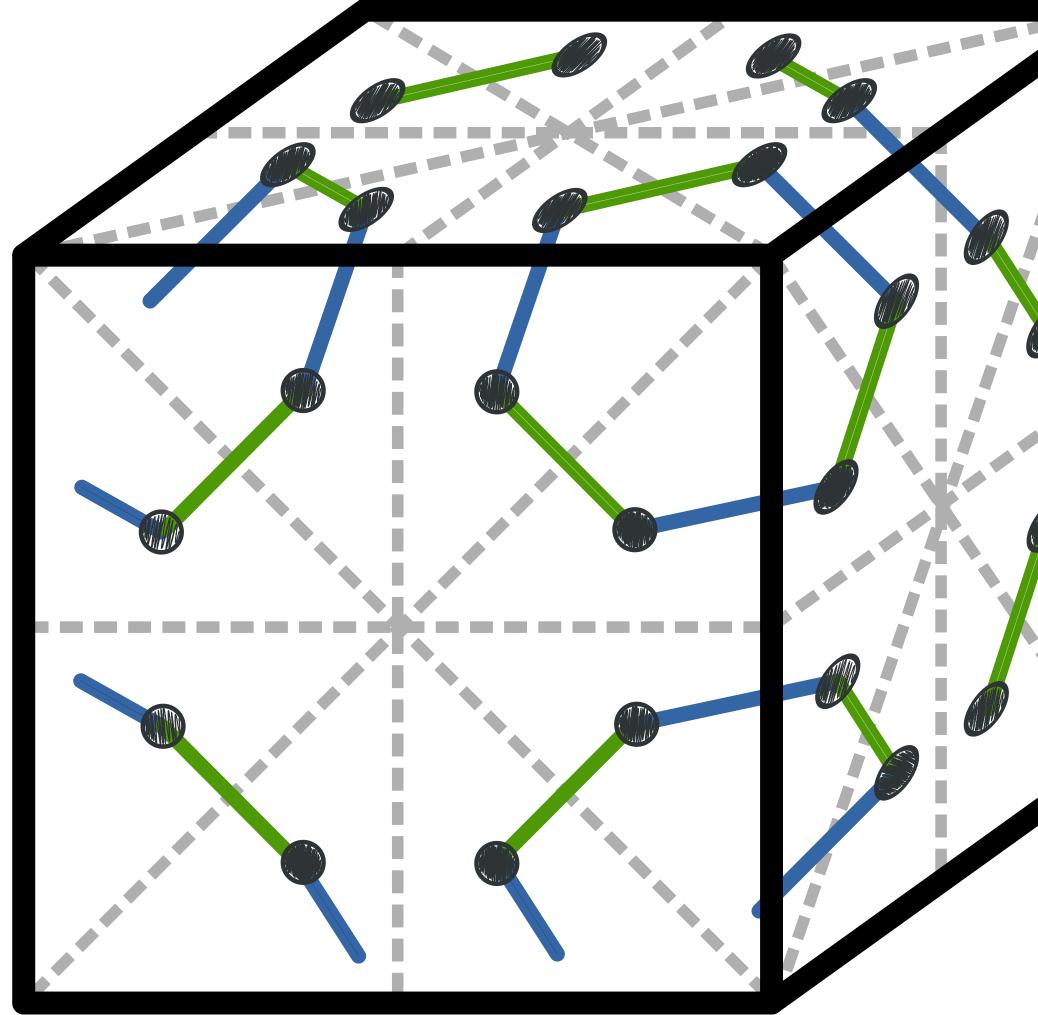
The flag graph $\mathcal{F}(\mathcal{M})$ of a map \mathcal{M} :

- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.



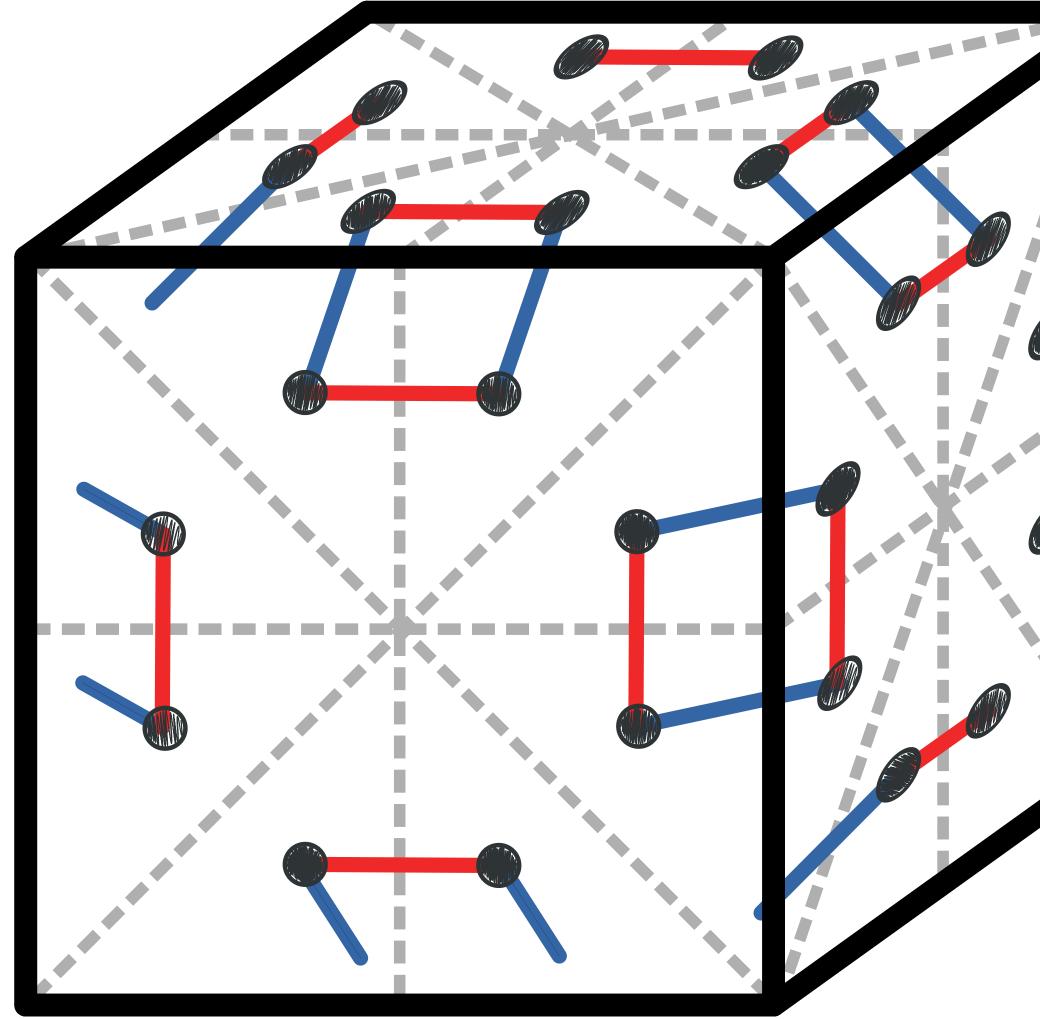
The flag graph $\mathcal{F}(\mathcal{M})$ of a map \mathcal{M} :

- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.



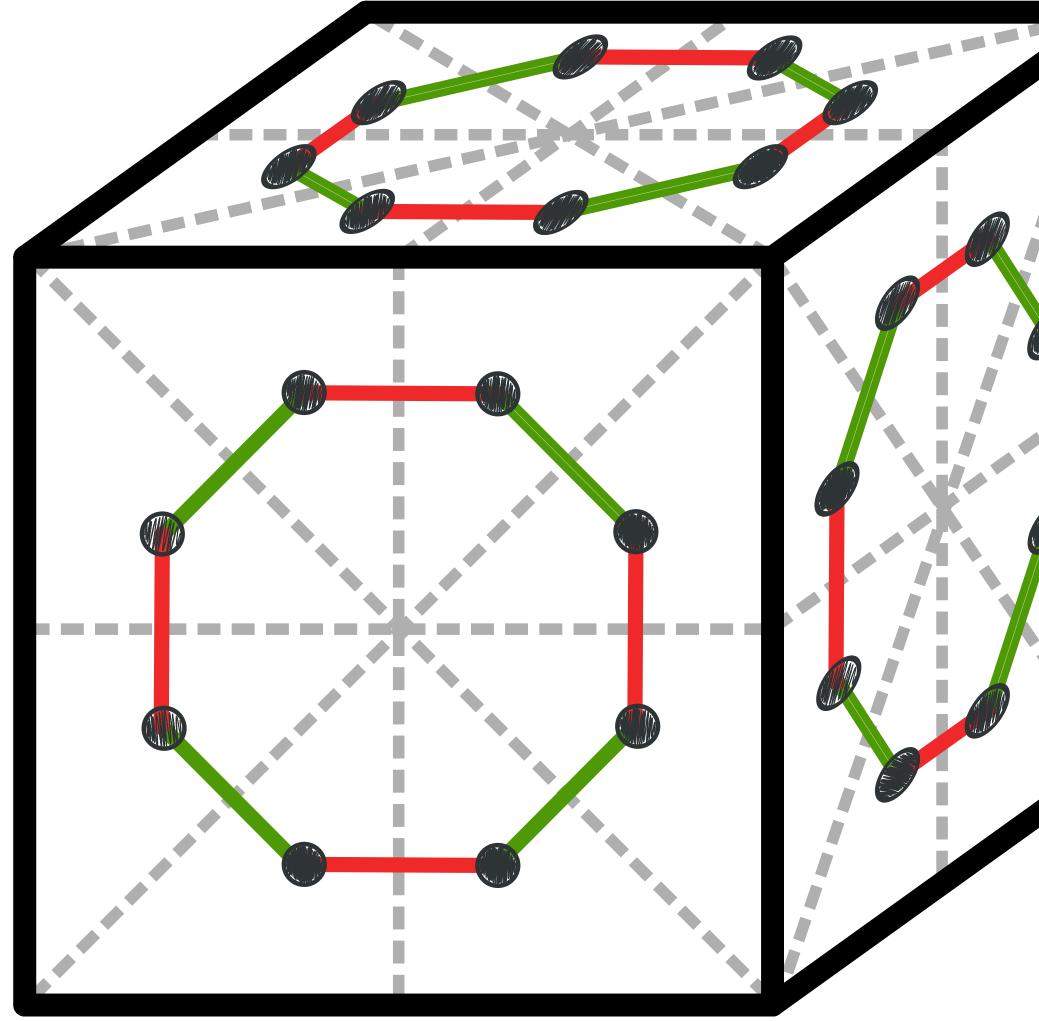
The flag graph $\mathcal{F}(\mathcal{M})$ of a map \mathcal{M} :

- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.



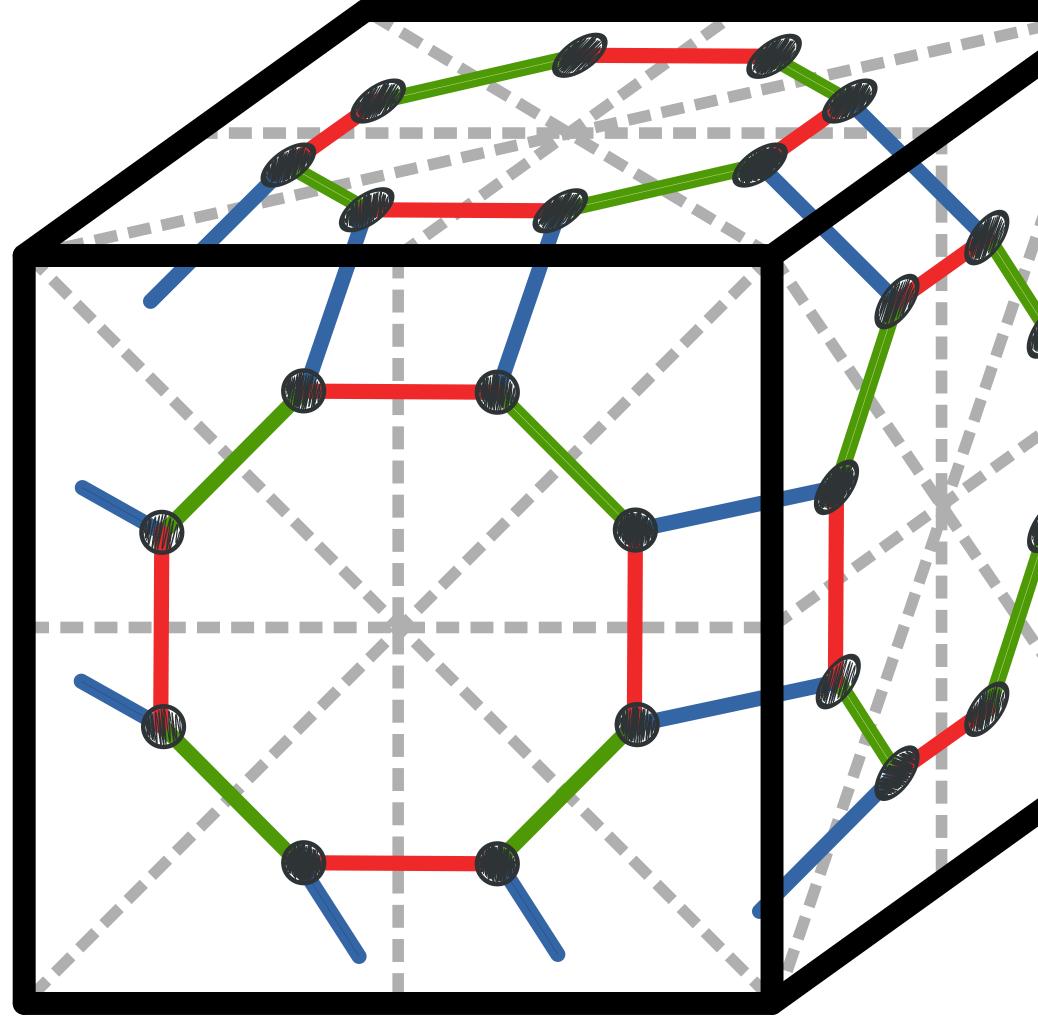
The flag graph $\mathcal{F}(\mathcal{M})$ of a map \mathcal{M} :

- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.



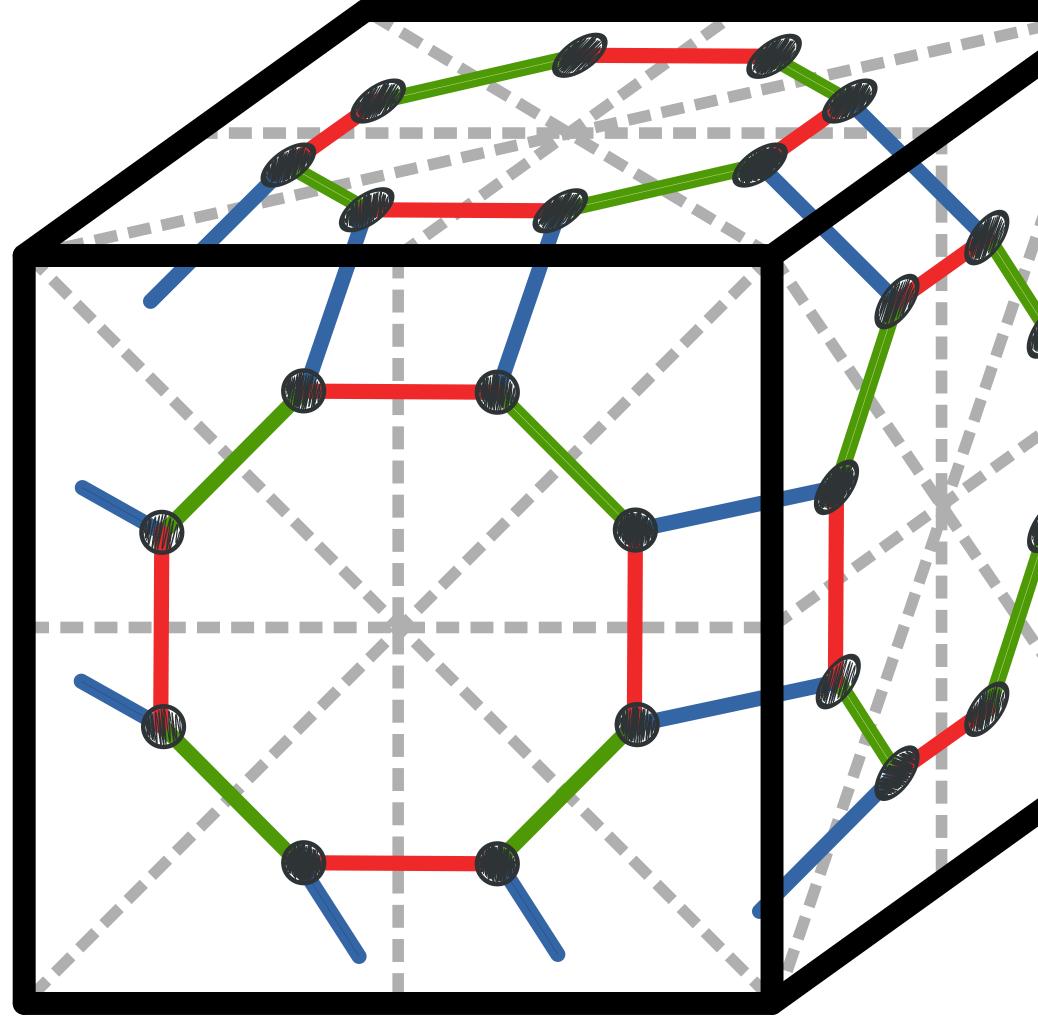
The flag graph $\mathcal{F}(\mathcal{M})$ of a map \mathcal{M} :

- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.

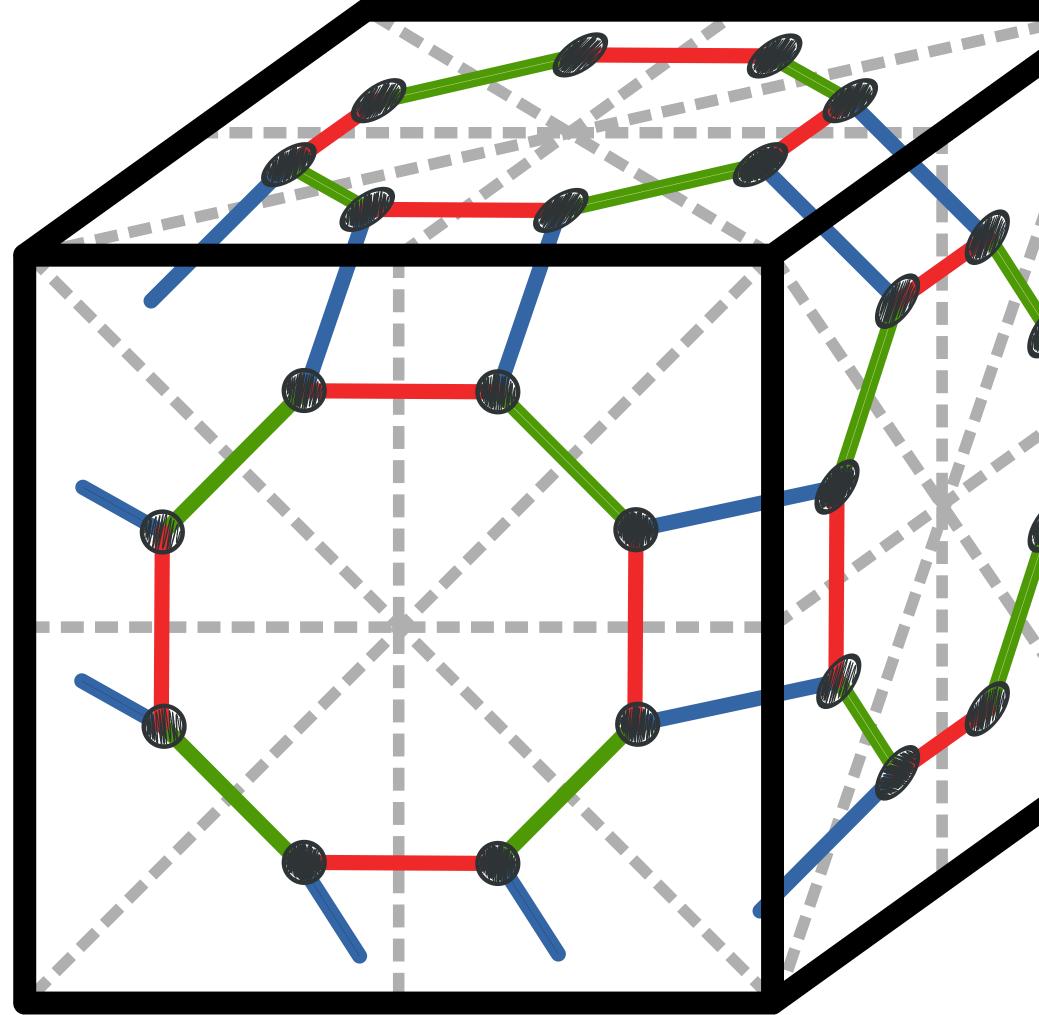


A 3-maniplex is a graph *M*:

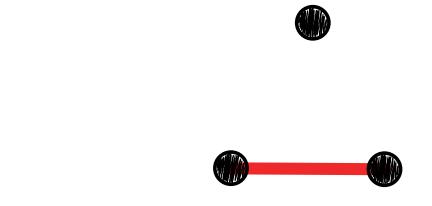
- Connected and simple,
- Valency 3,
- Properly-edge 3-coloured,
- The (0,2,0,2)-paths are alternating squares.

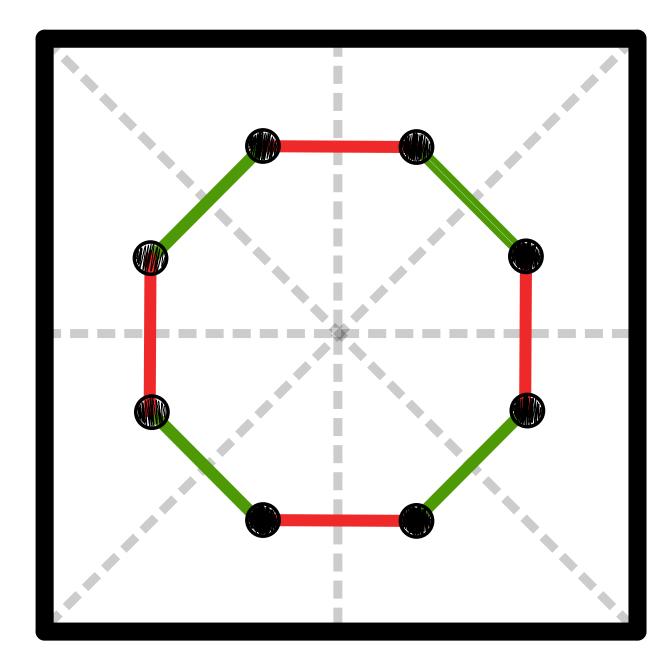


- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1

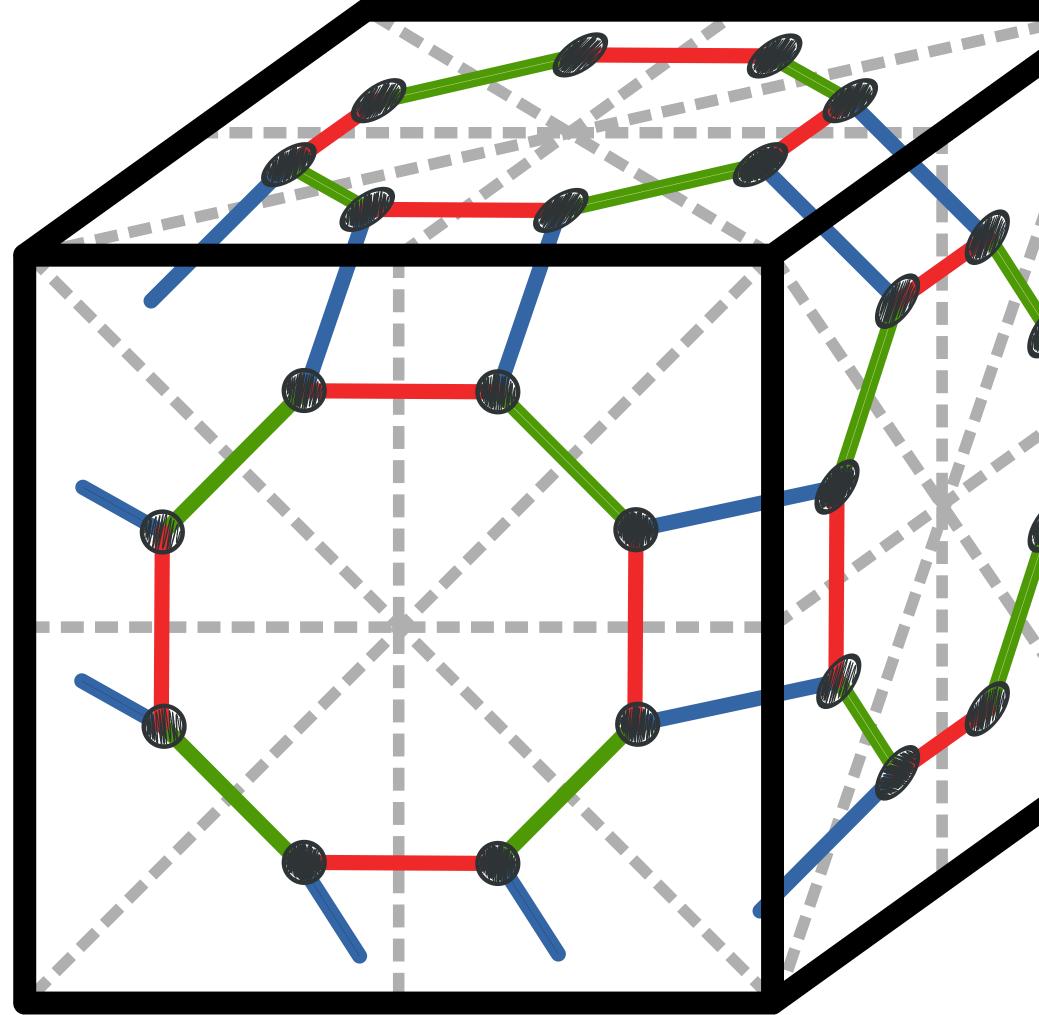


- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1

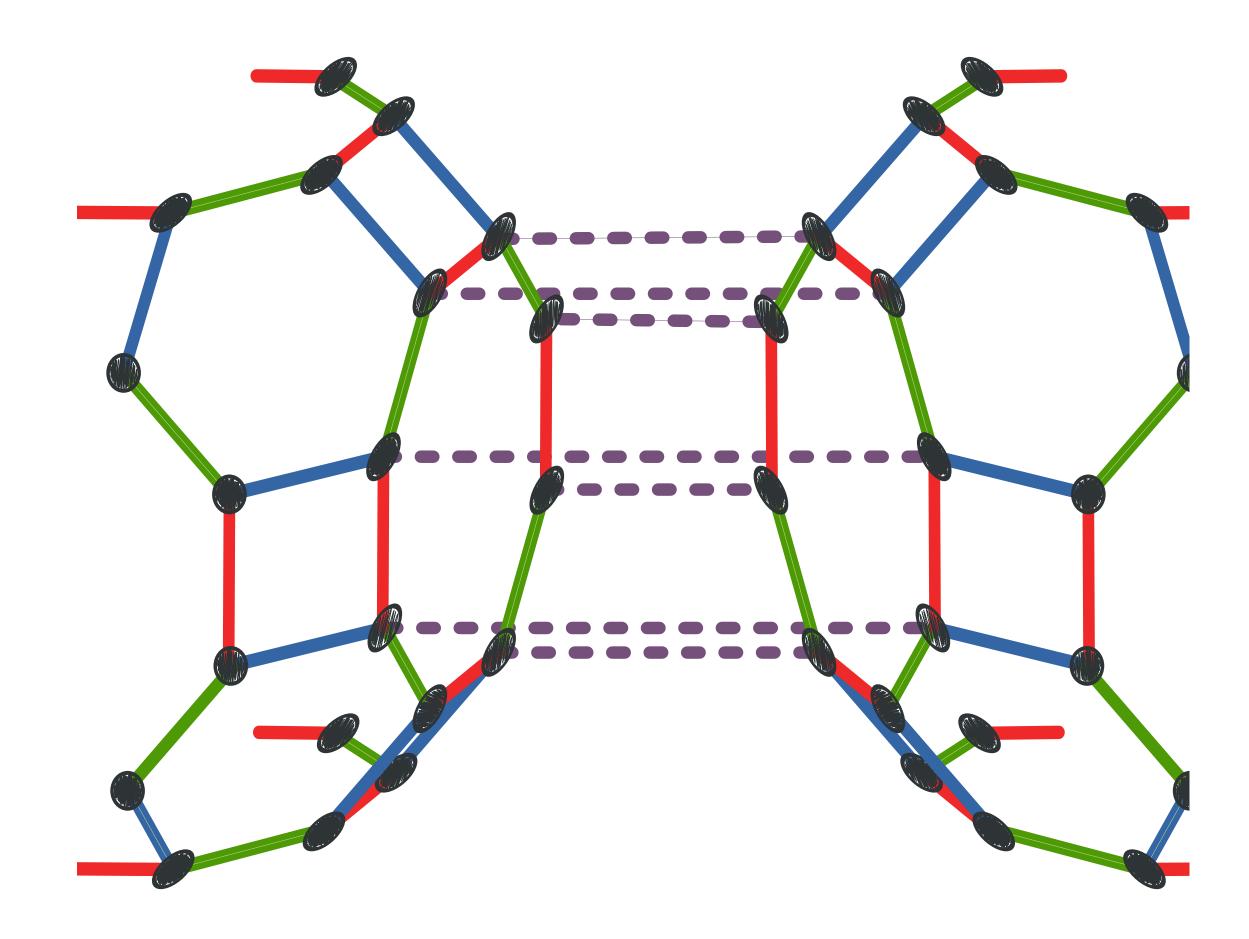




- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1



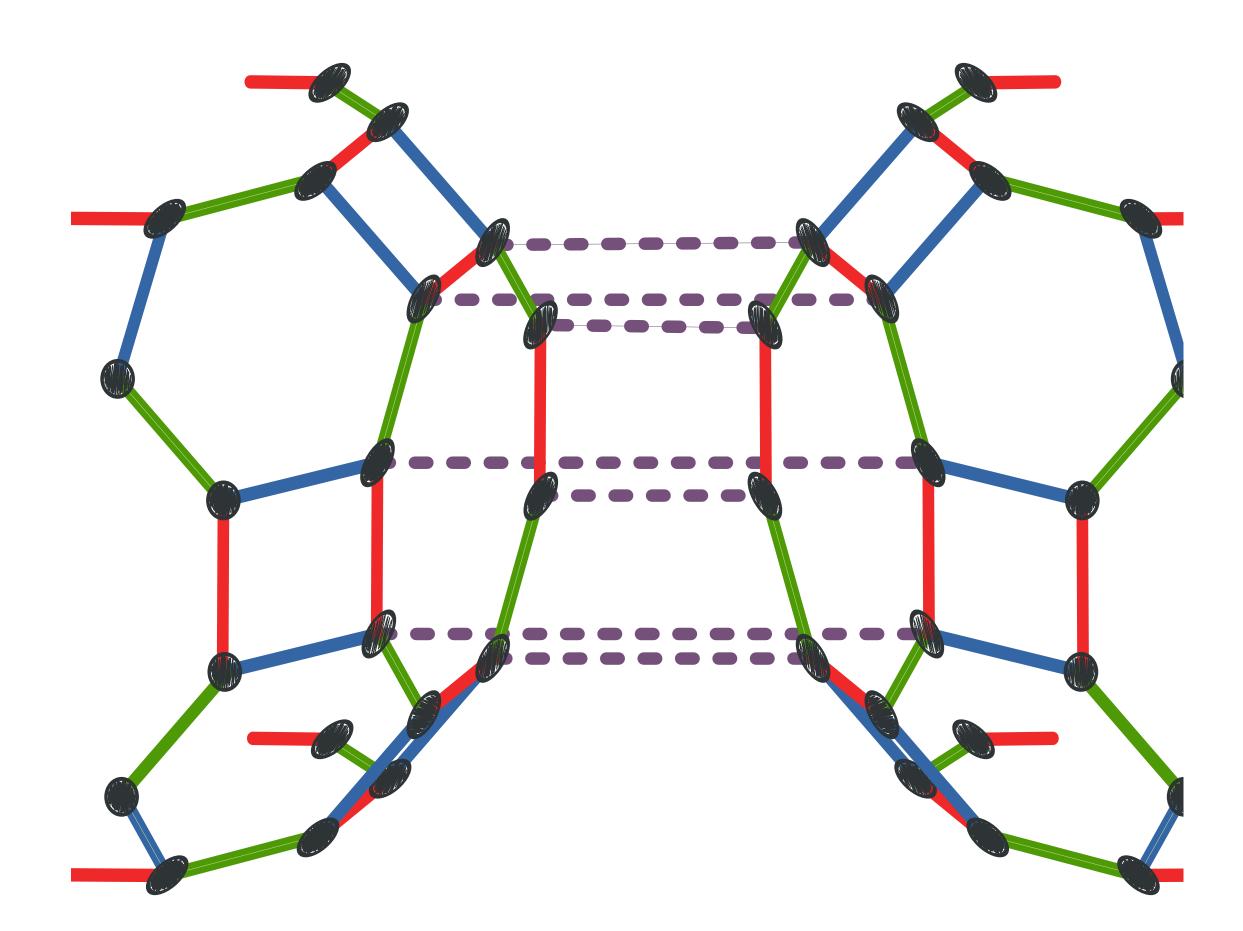
- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1



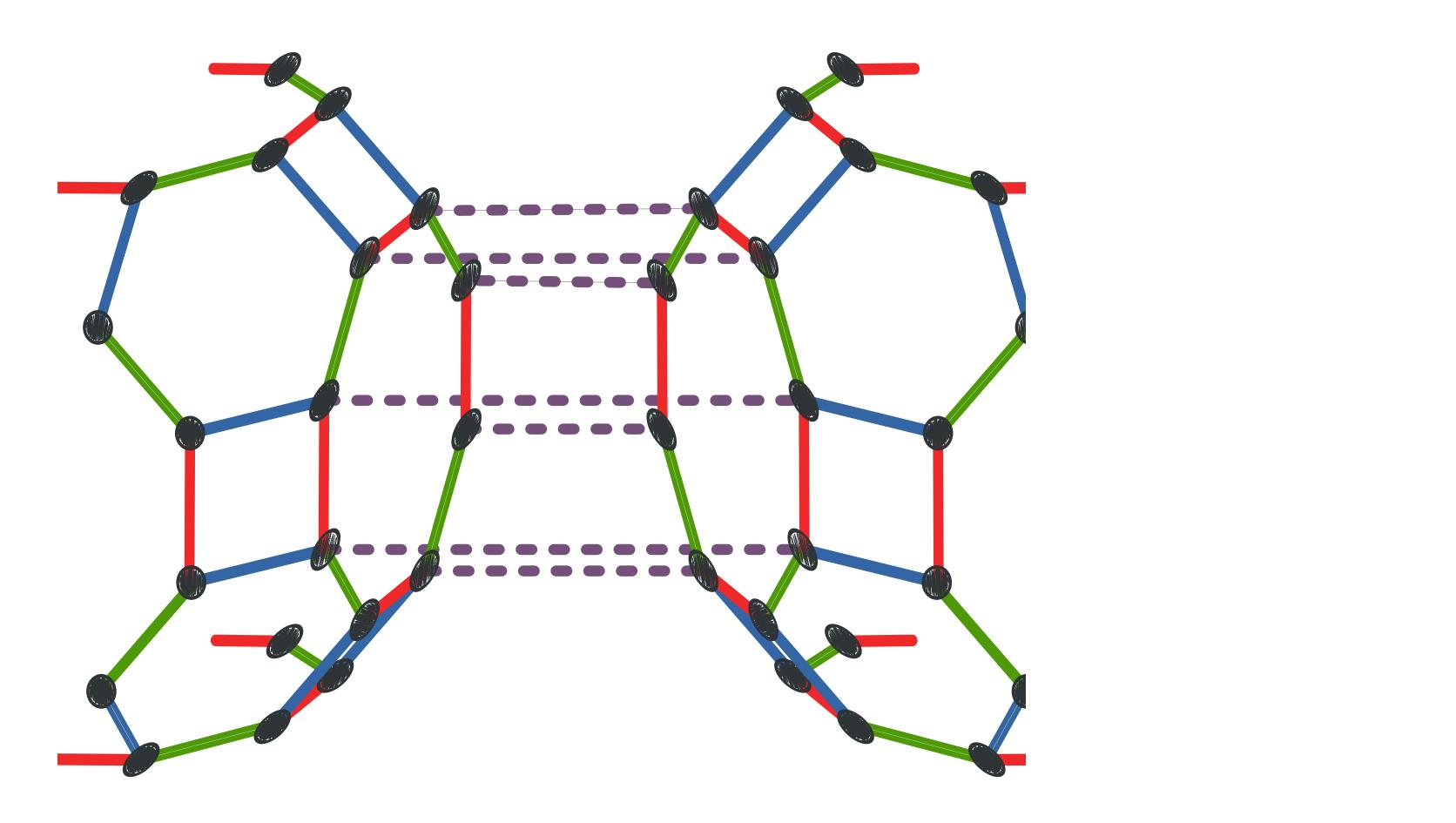
A *n*-maniplex is a graph *M*:

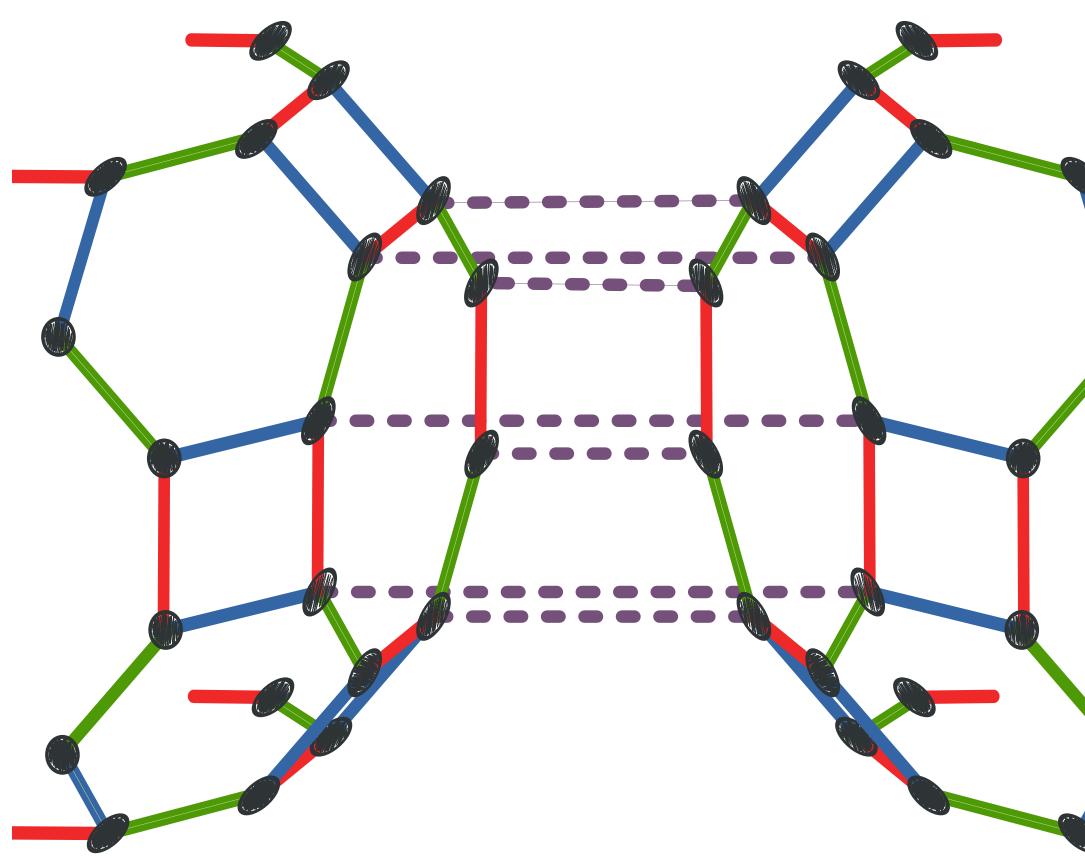
- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (*i*, *j*, *i*, *j*)-paths are alternating squares, whenever |i - j| > 1

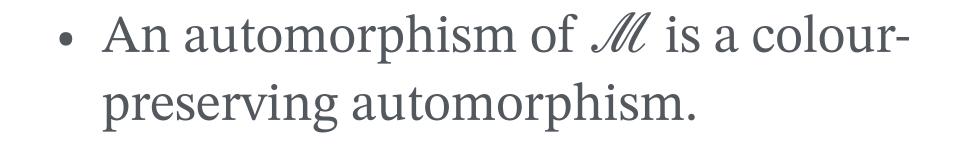
Hubard, Garza-Vargas (2017): Abstract polytopes are faithful maniplexes that satisfy the PIC



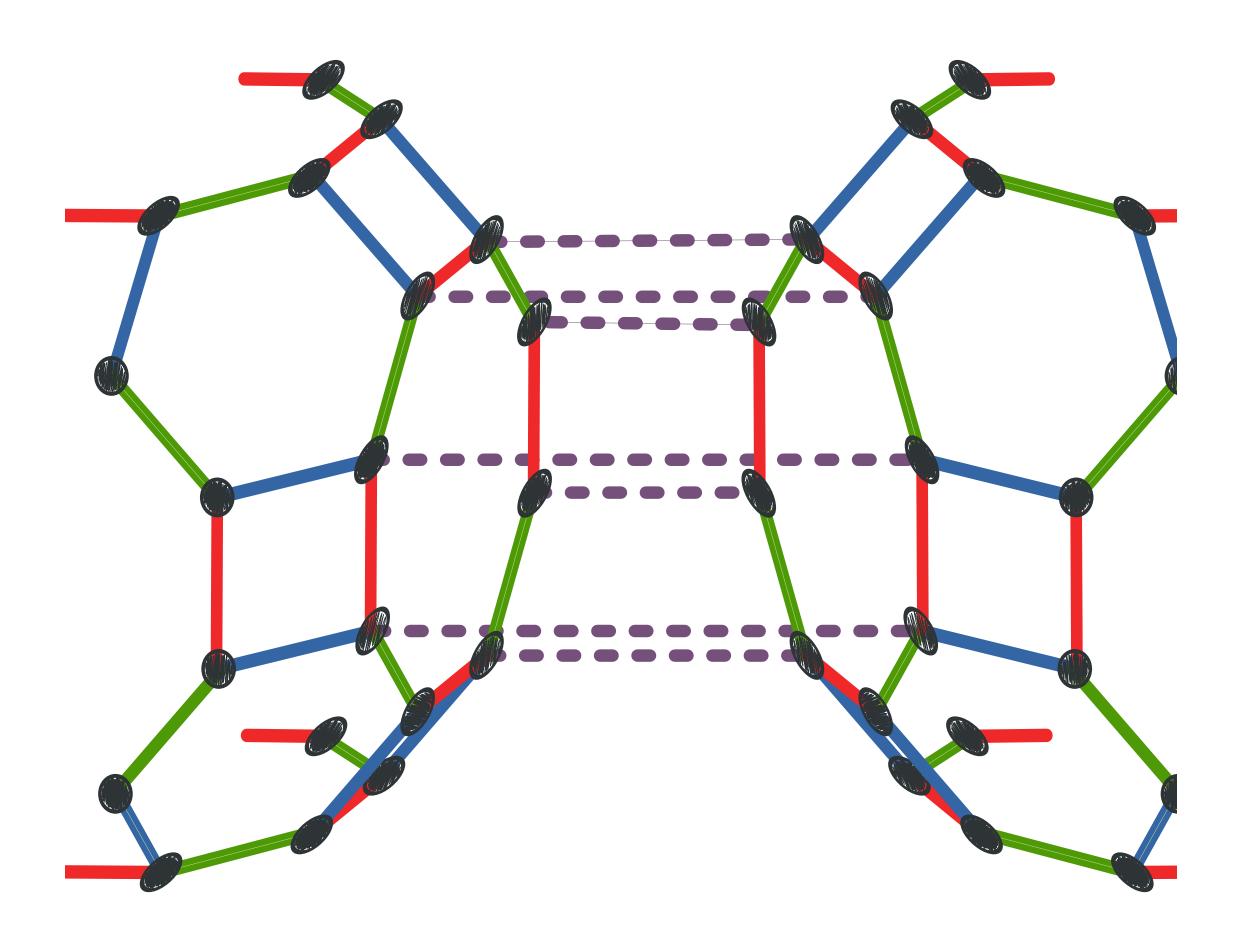
Gabe might or might not have talked about this.





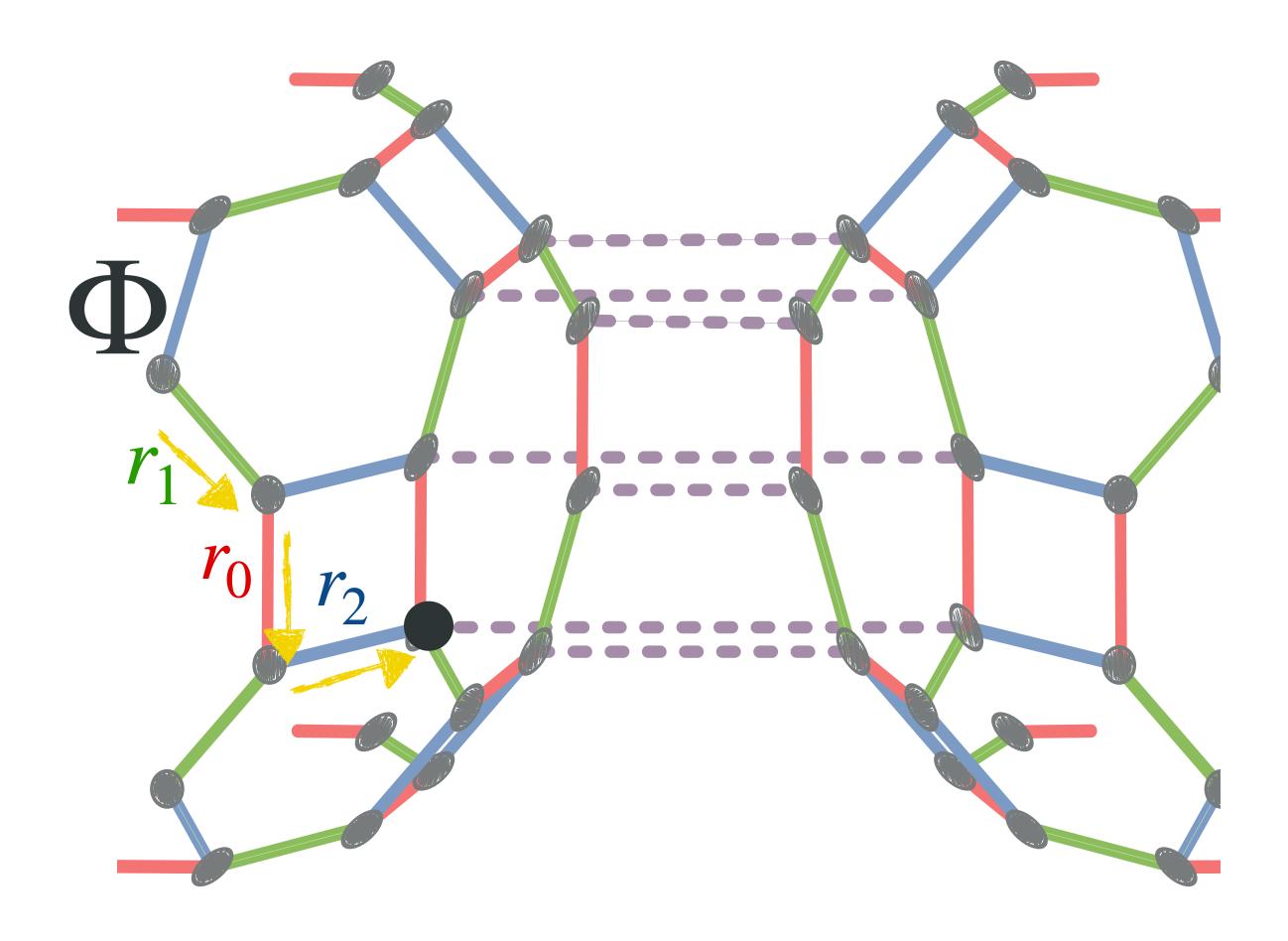


• The group $Aut(\mathcal{M})$ acts freely on the flags.



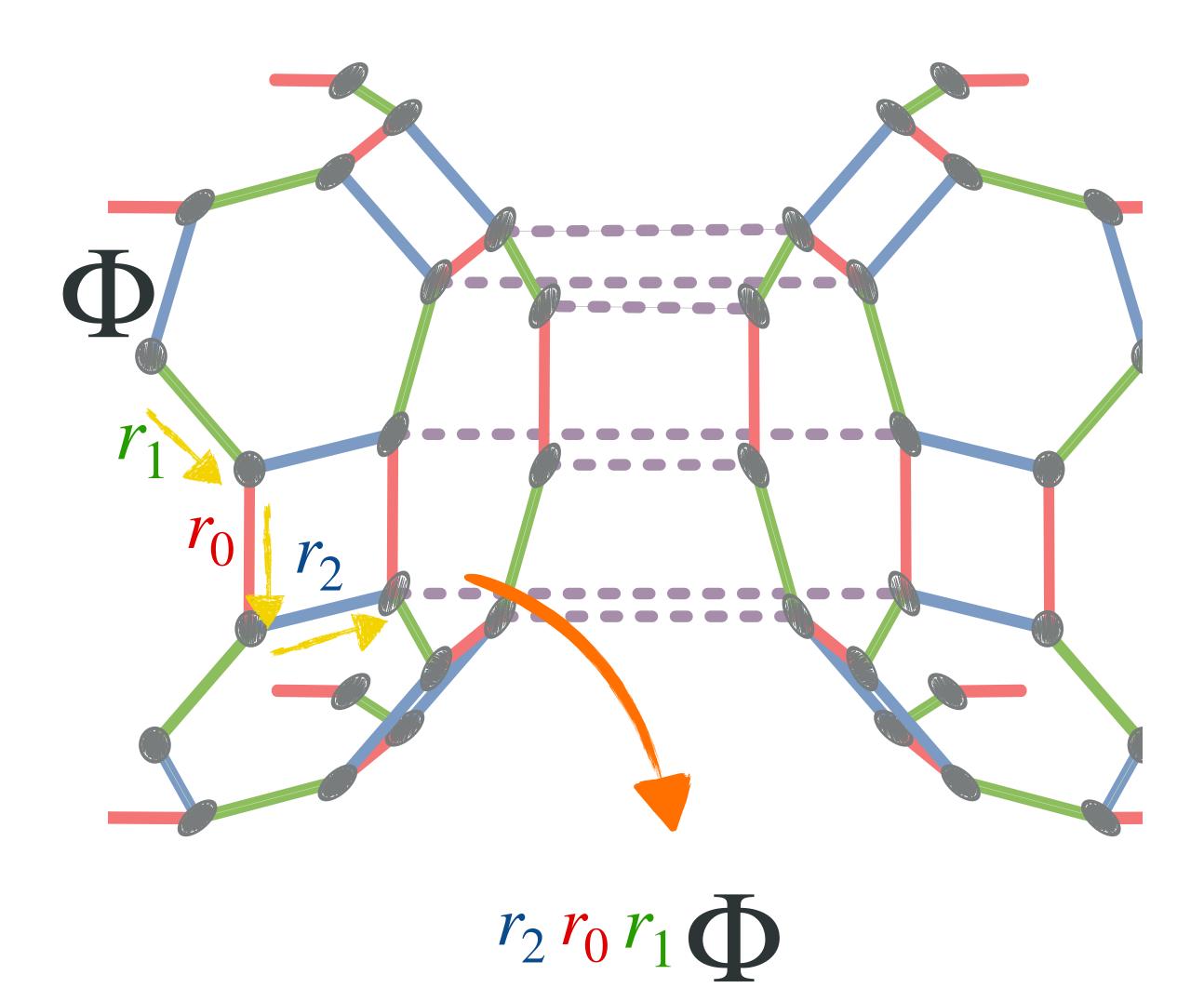
- An automorphism of \mathcal{M} is a colourpreserving automorphism.
- The group $Aut(\mathcal{M})$ acts freely on the flags.
- The group

$$W_n = \langle r_0, ..., r_{n-1} | (r_i)^2 = (r_i r_j)^2 = 1 \rangle$$



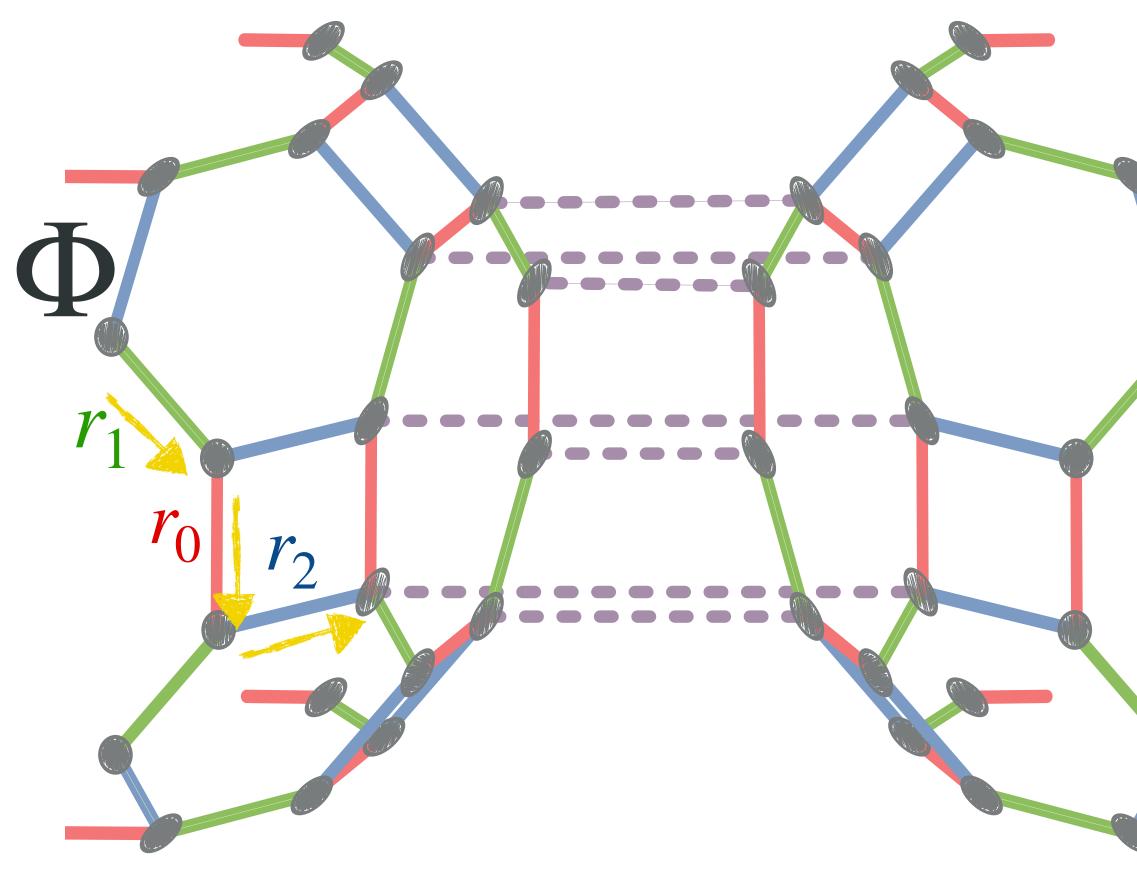
- An automorphism of *M* is a colourpreserving automorphism.
- The group $Aut(\mathcal{M})$ acts freely on the flags.
- The group

$$W_n = \langle r_0, ..., r_{n-1} | (r_i)^2 = (r_i r_j)^2 = 1 \rangle$$



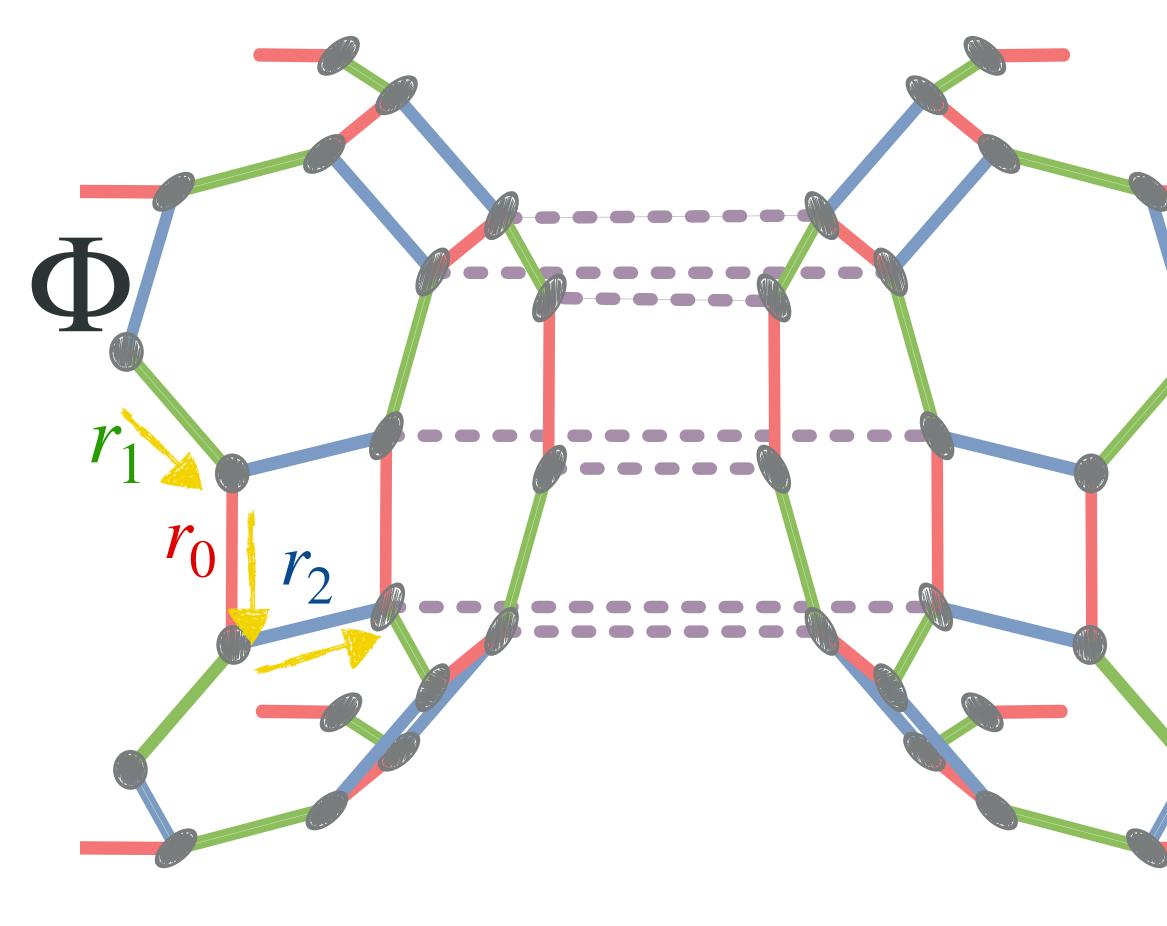
- An automorphism of ${\mathscr M}$ is a colourpreserving automorphism.
- The group $Aut(\mathcal{M})$ acts freely on the flags.
- The group

$$W_n = \langle r_0, ..., r_{n-1} | (r_i)^2 = (r_i r_j)^2 = 1 \rangle$$



• The group

$$W_n = \langle r_0, ..., r_{n-1} | (r_i)^2 = (r_i r_j)^2 = 1 \rangle$$



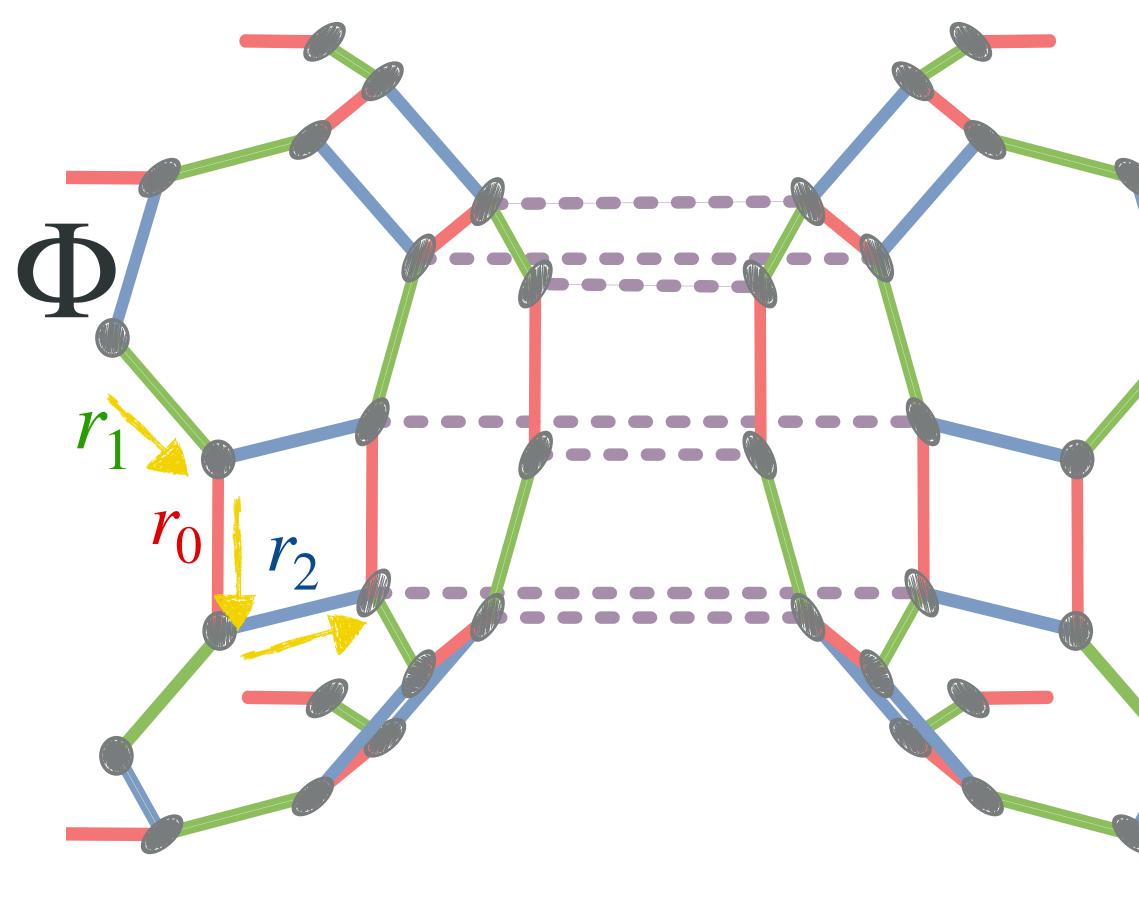
$$W_n = \langle r_0, ..., r_{n-1} | (r_i)^2 = (r_i r_j)^2 = 1 \rangle$$

acts on \mathcal{M} by connections.

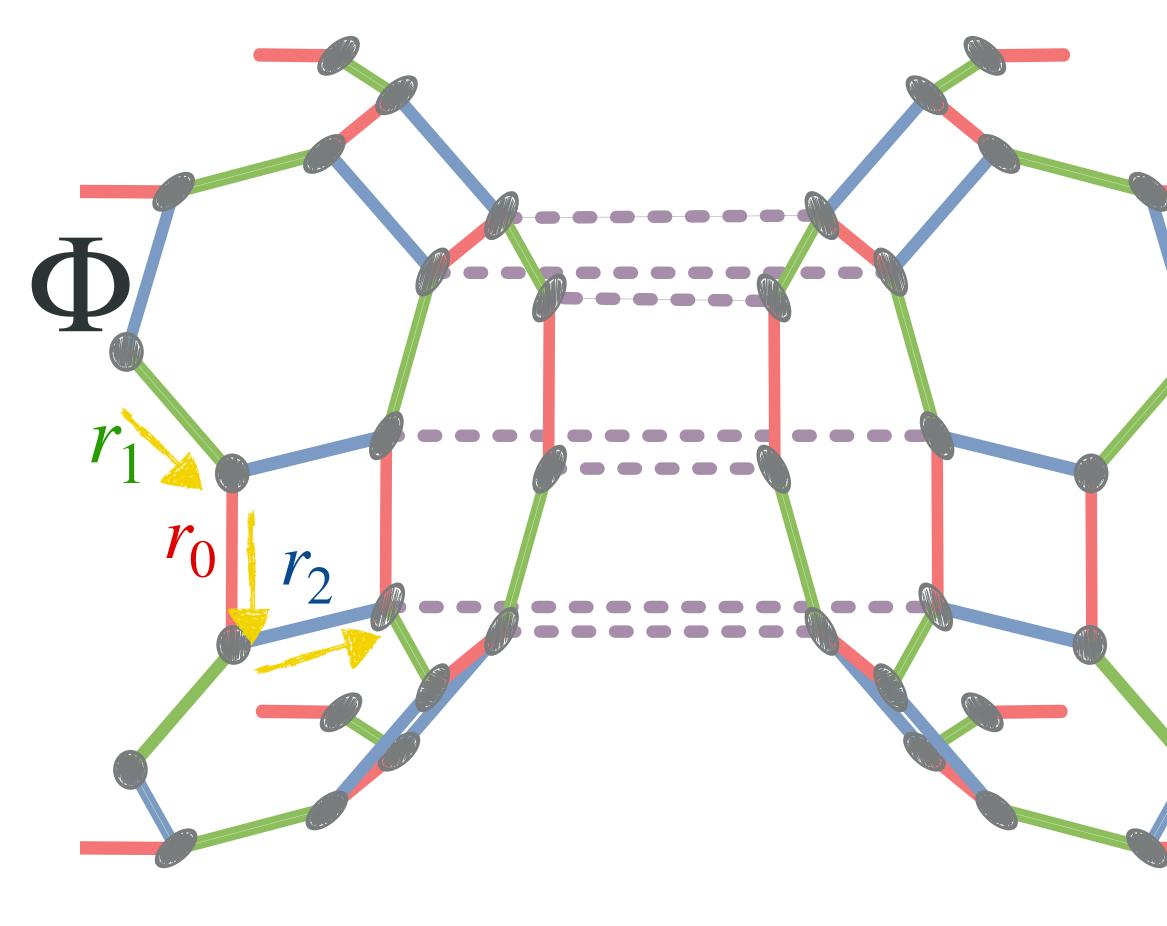
• The universal *n*-maniplex is

 $\mathcal{U}^n = \operatorname{Cay}(W_n)$

 $\operatorname{Aut}(\mathcal{U}^n) = W_n$



 $\mathcal{U}^n = \operatorname{Cay}(W_n)$ $\operatorname{Aut}(\mathscr{U}^n) = W_n$



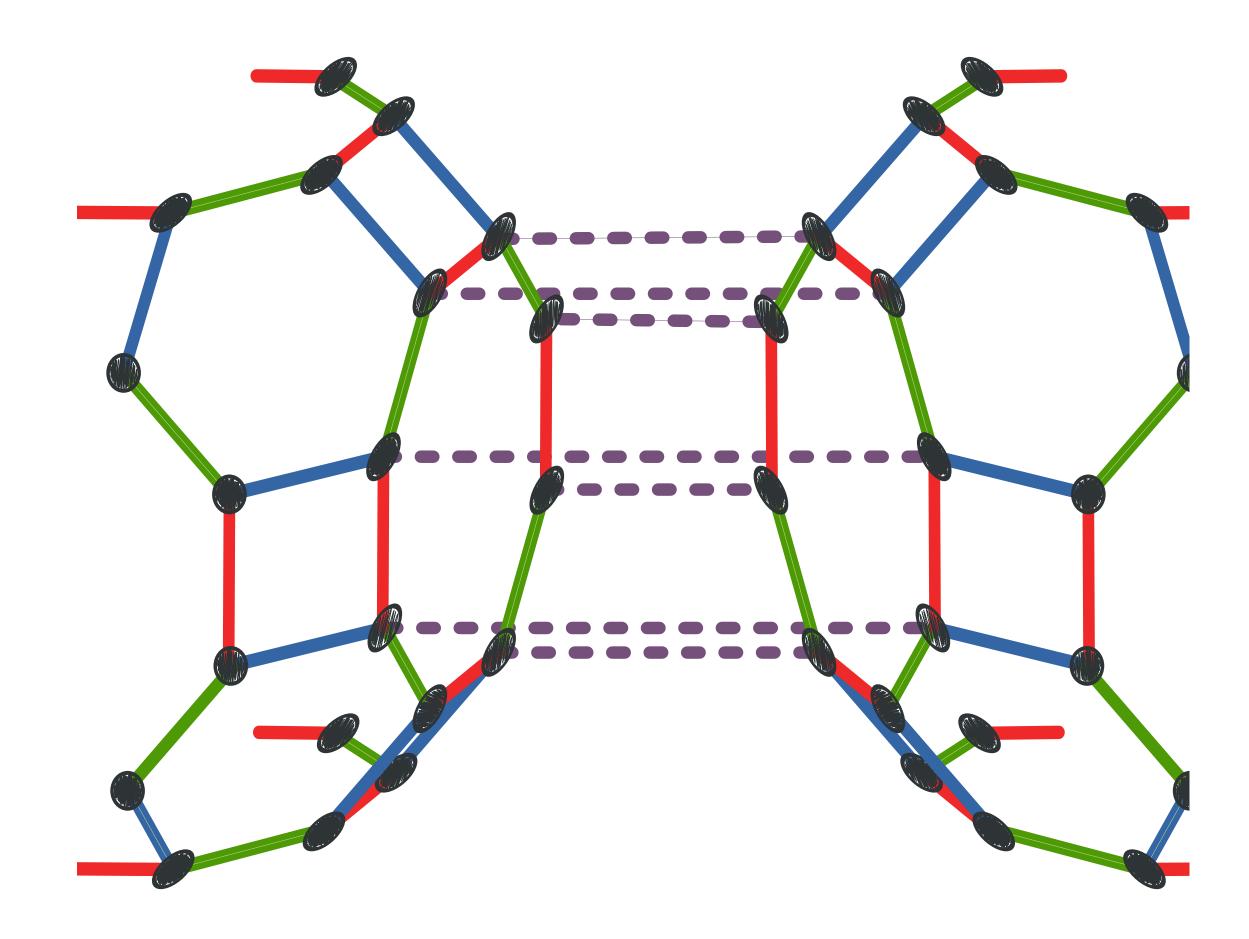
 $\mathcal{U}^n = \operatorname{Cay}(W_n)$ $\operatorname{Aut}(\mathscr{U}^n) = W_n$

Hartley,... (1999, ...): Every n-maniplex is a quotient of \mathcal{U}^n .

 $\mathcal{U}^n/M \searrow \mathcal{U}^n/N \iff M \le N$

A *n*-maniplex is a graph *M*:

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1



A *n*-maniplex is a graph \mathcal{M} :

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1

A *n*-premaniplex is a graph \mathcal{M} :

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1

A *n*-premaniplex is a graph *M*:

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating squares, whenever |i - j| > 1

semi-edges 🗸

loops 🗡

parallel edges 🗸

A *n*-premaniplex is a graph *M*:

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (*i*, *j*, *i*, *j*)-paths are alternating closed paths whenever |i - j| > 1

semi-edges 🗸

loops 🗡

parallel edges 🗸

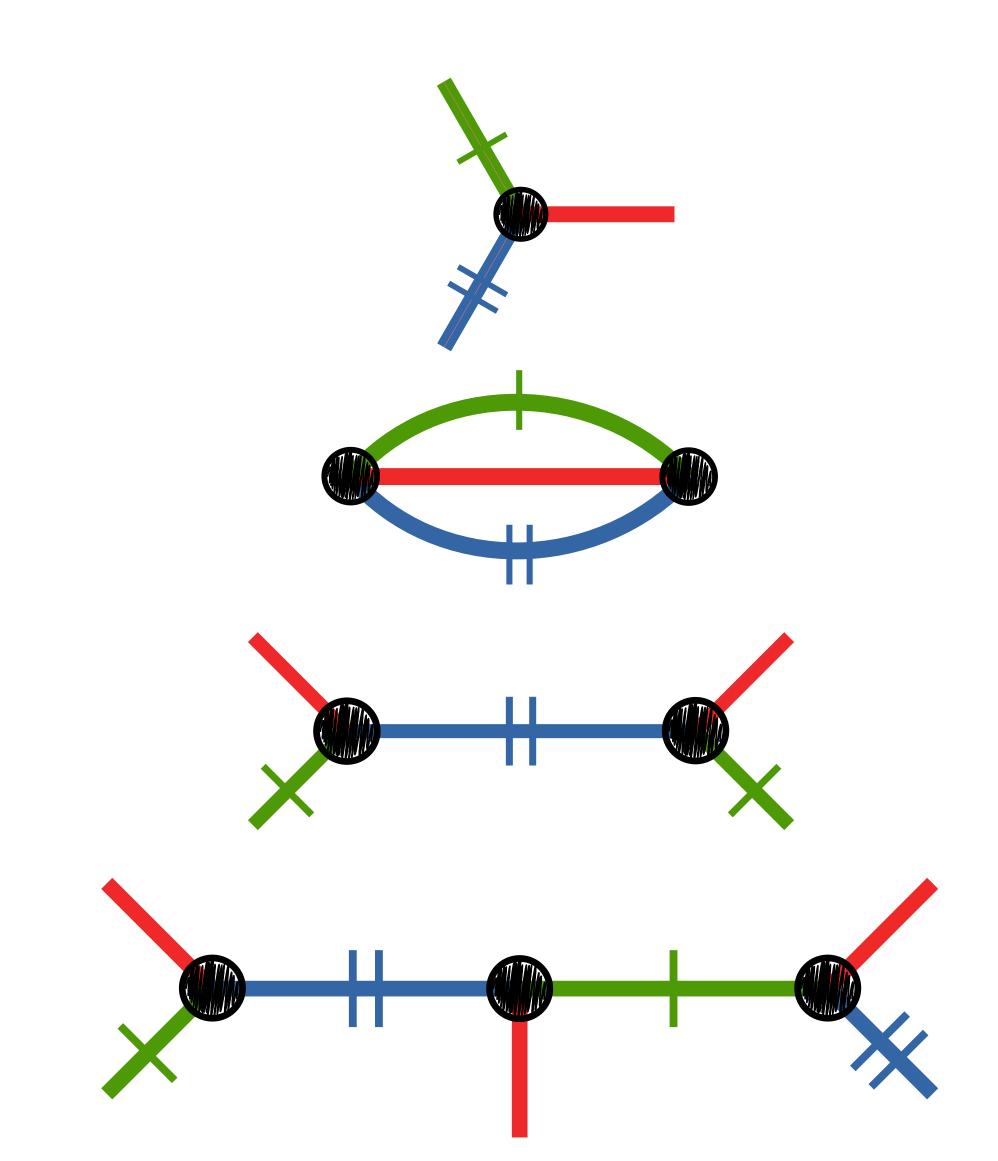
A *n*-premaniplex is a graph *M*:

- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (i, j, i, j)-paths are alternating closed paths whenever |i - j| > 1

semi-edges 🗸

loops 🗡

parallel edges 🗸



A *n*-premaniplex is a graph *M*:

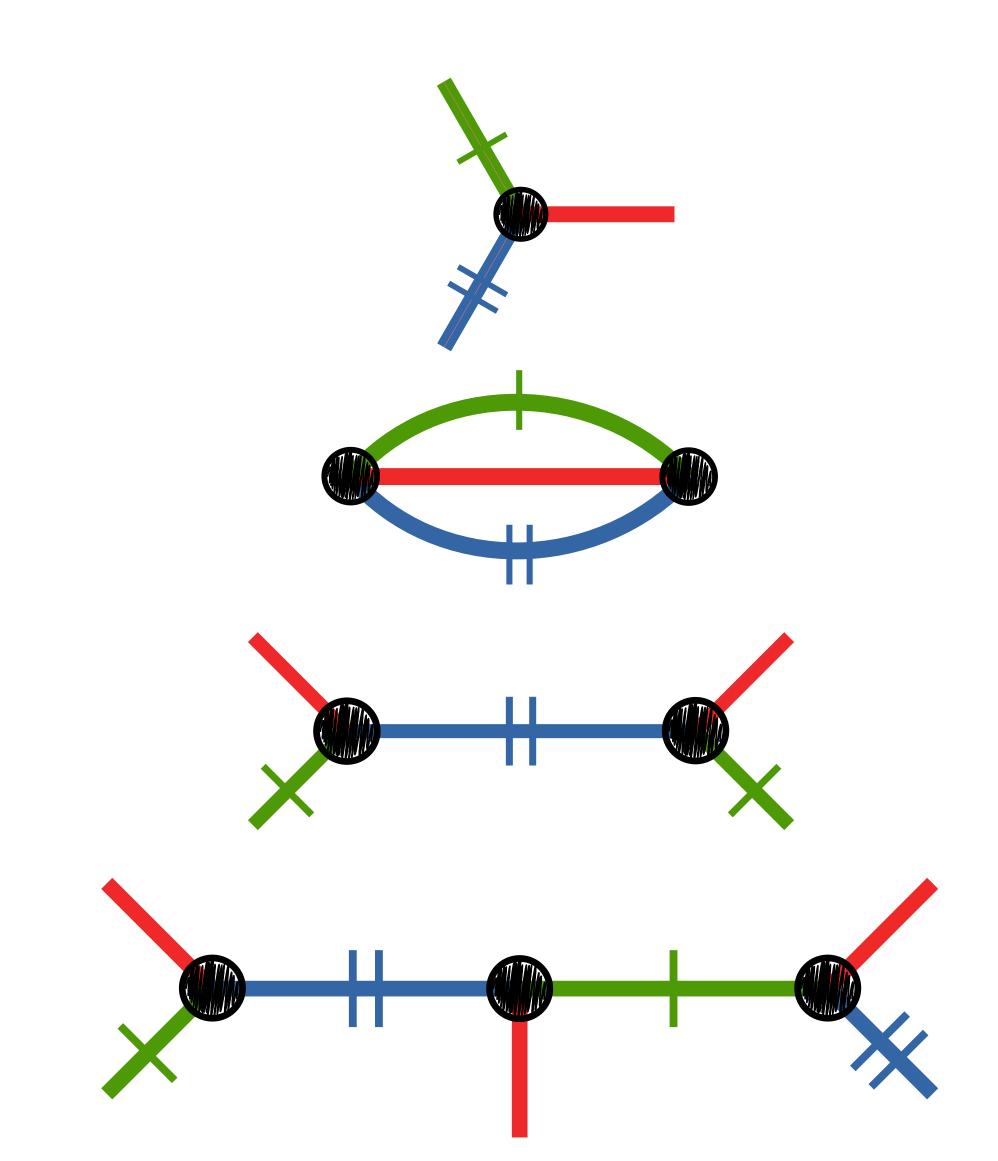
- Connected and simple,
- Valency *n*,
- Properly-edge *n*-coloured,
- The (*i*, *j*, *i*, *j*)-paths are alternating closed paths whenever |i - j| > 1

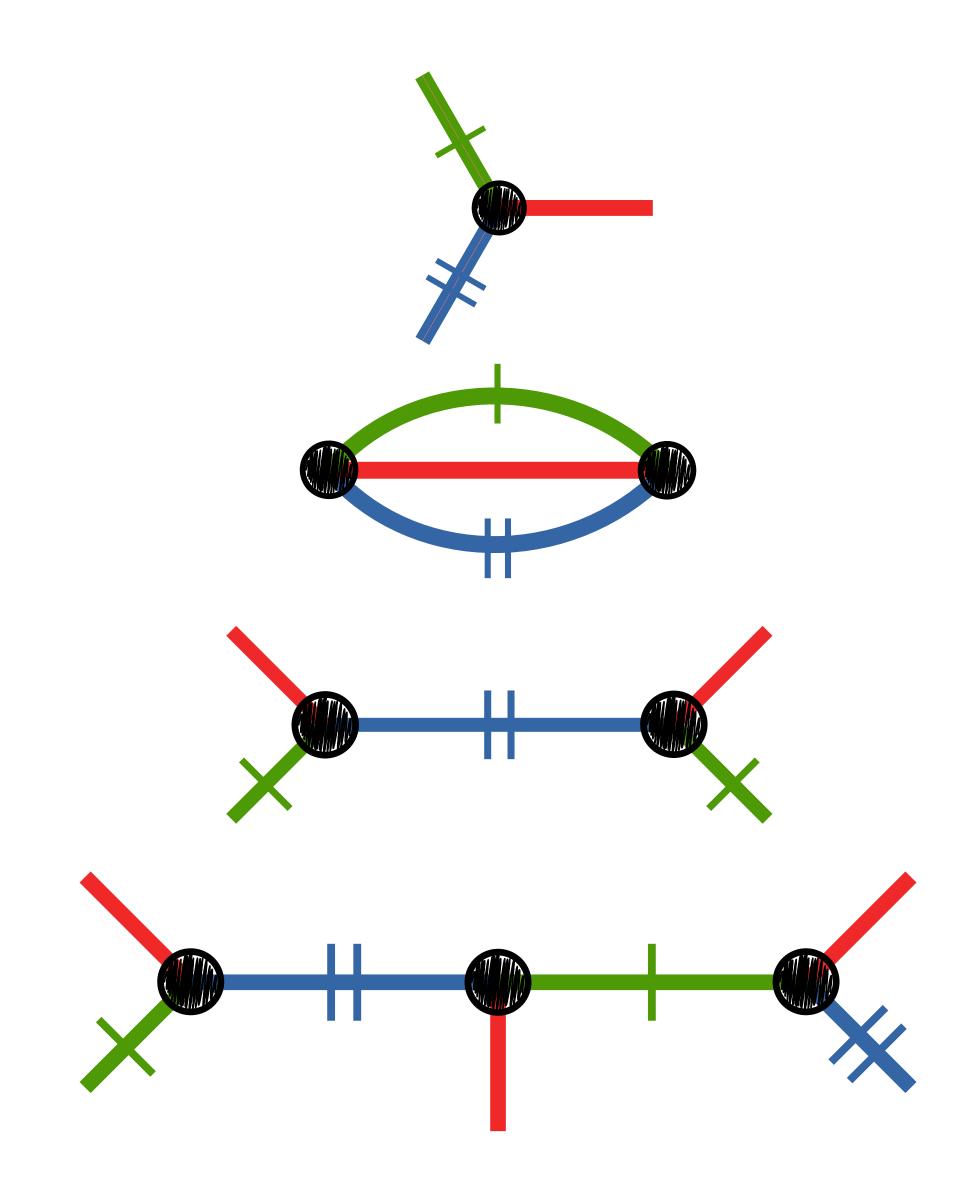
semi-edges 🗸

loops 🗡

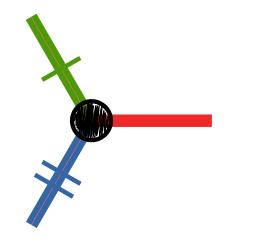
parallel edges 🗸

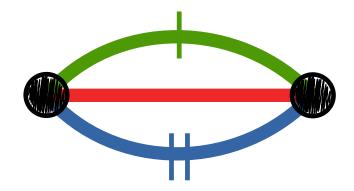
The notions of cover and automorphism extend naturally from maniplexes to premaniplexes

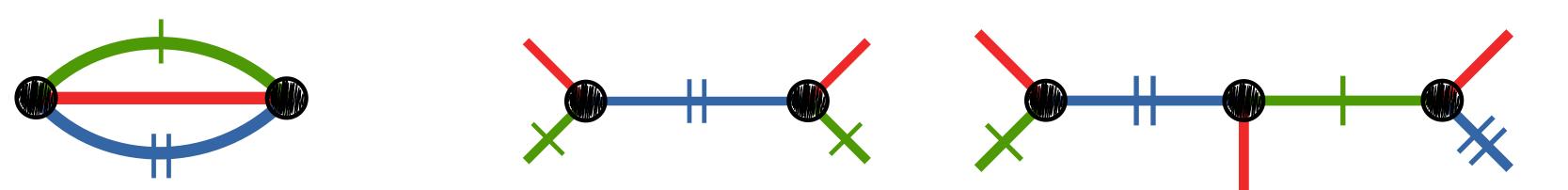


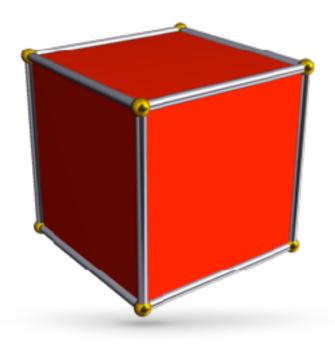


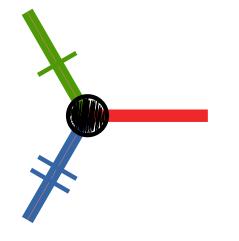
The Symmetry-type Graph (STG) of a maniplex *M* is the quotient *M*/Aut(*M*)

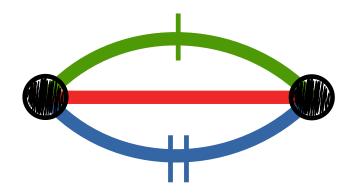


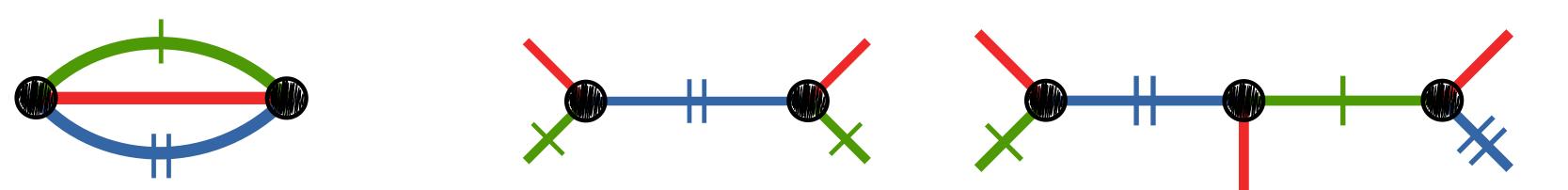


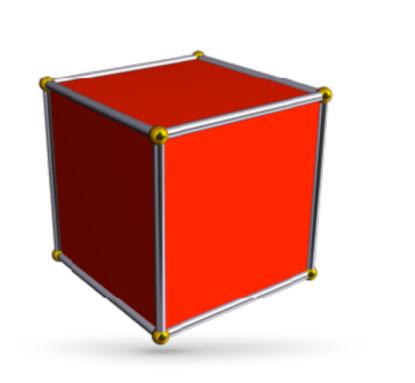


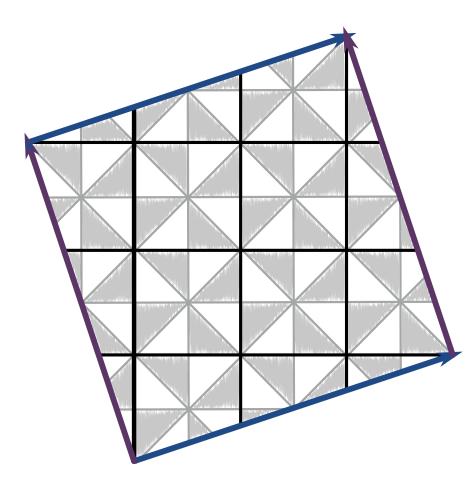


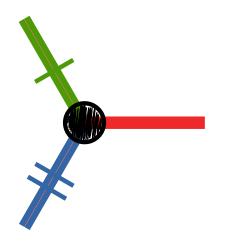


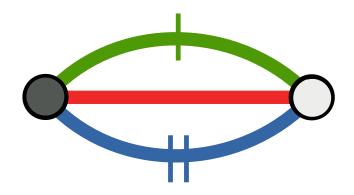


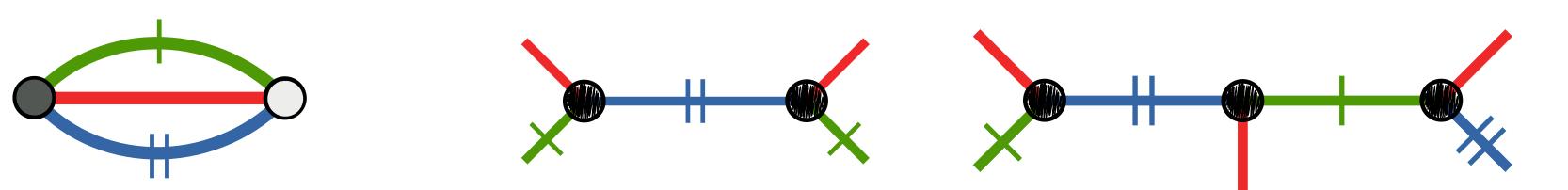


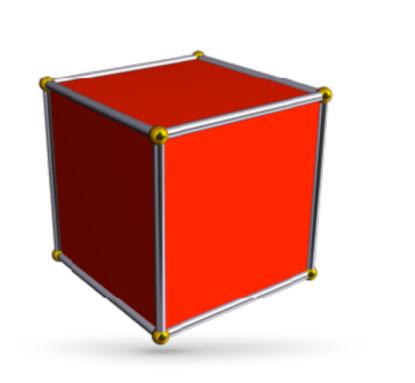


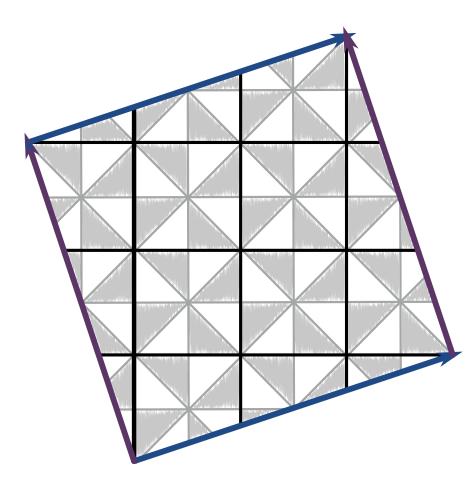


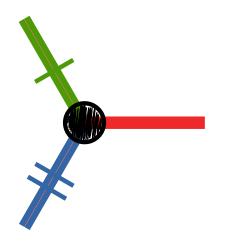


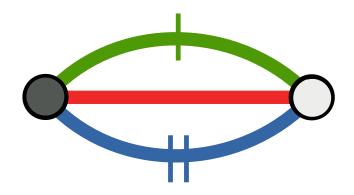


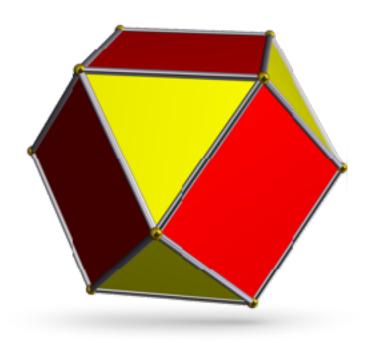


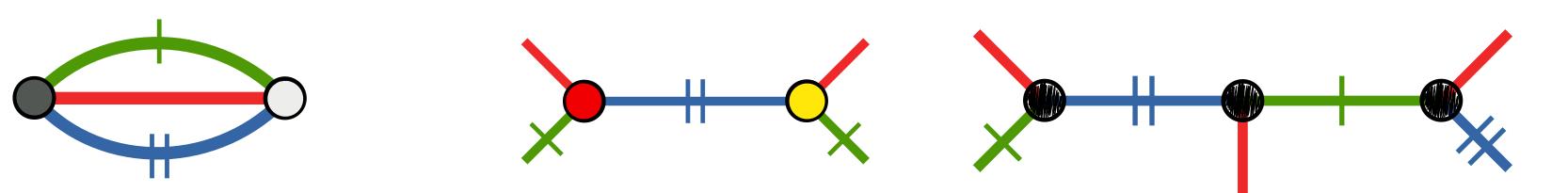


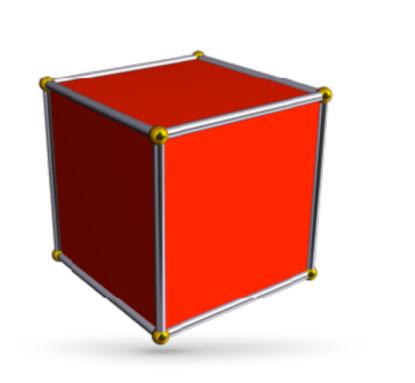


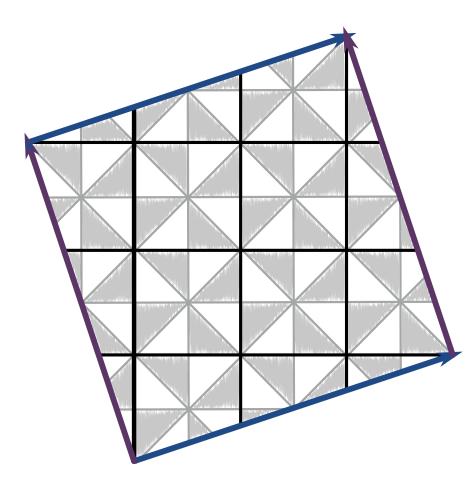


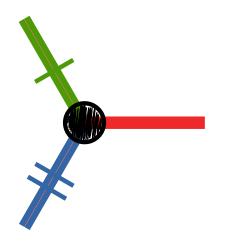


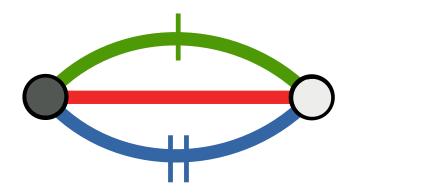


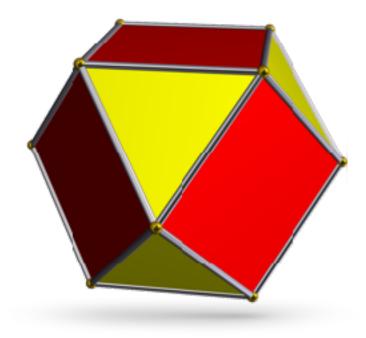


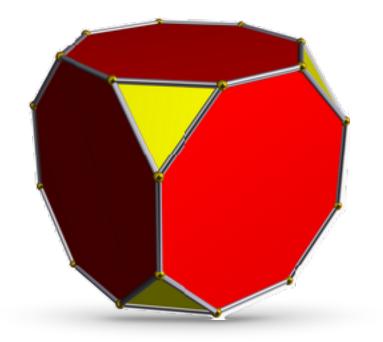


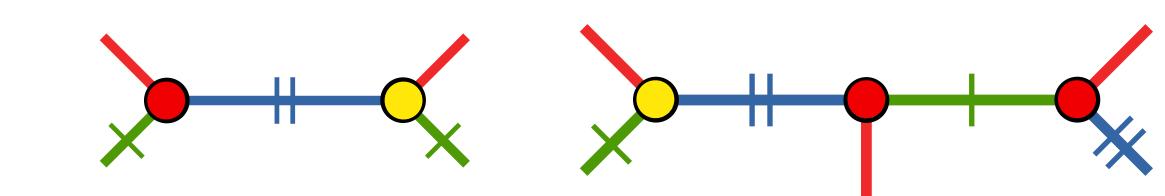








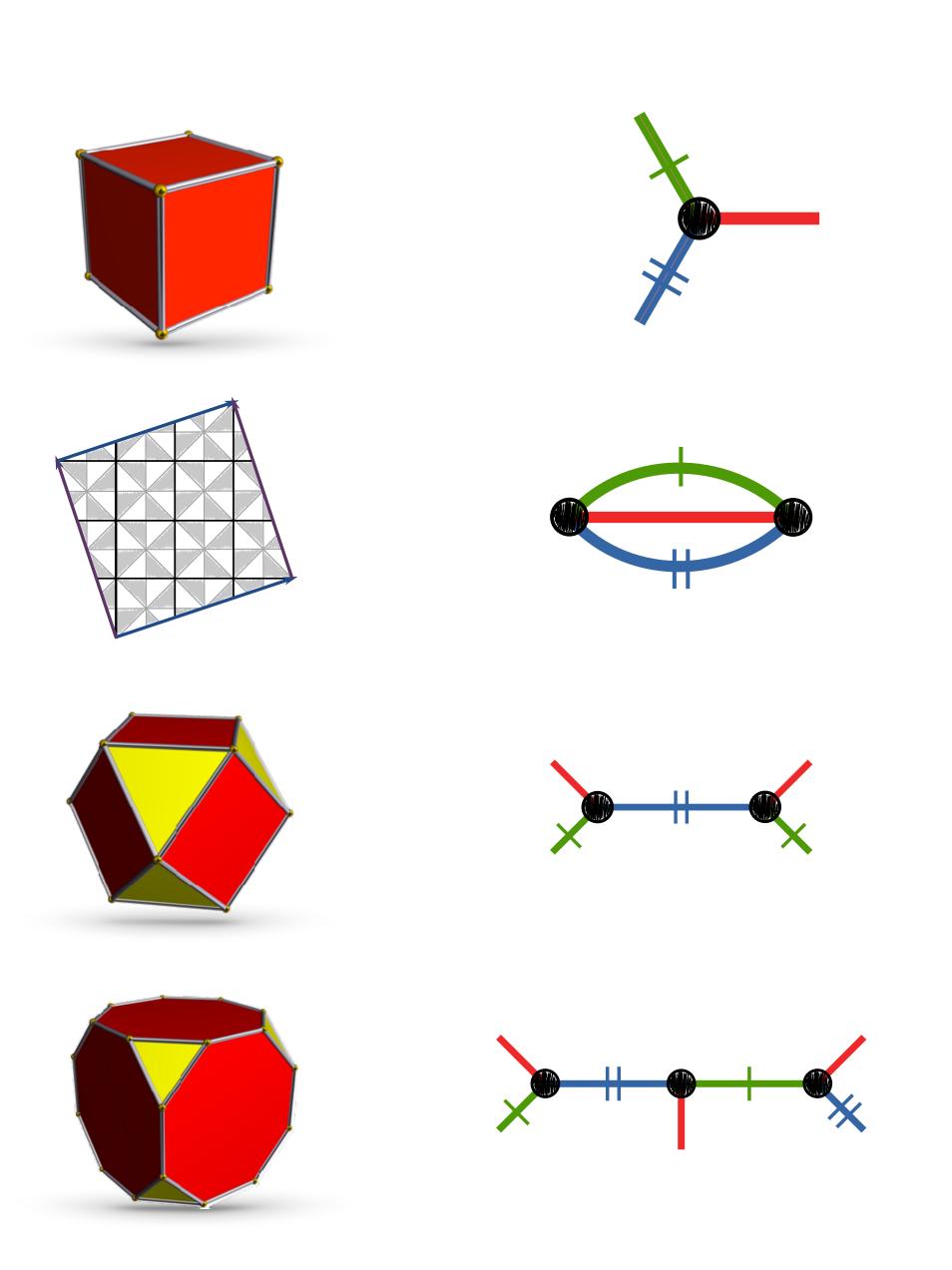




Symmetry-type conjecture:

Given a connected *n*-premaniplex \mathcal{T} , there exists a *n*-maniplex (polytope) \mathcal{M} such that

$$STG(\mathcal{M}) = \mathcal{T}$$



Symmetries of voltage operations on maniplexes and polytopes

Symmetries of voltage operations on maniplexes and polytopes

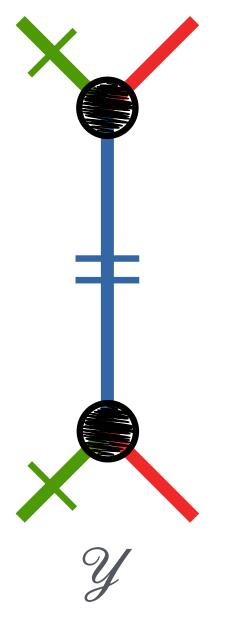
• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

n-premaniplex

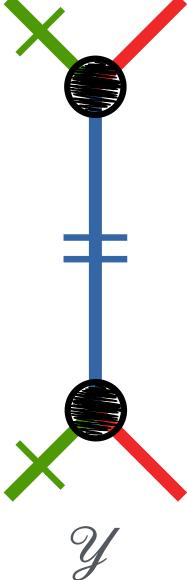
Y

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)



n-premaniplex

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

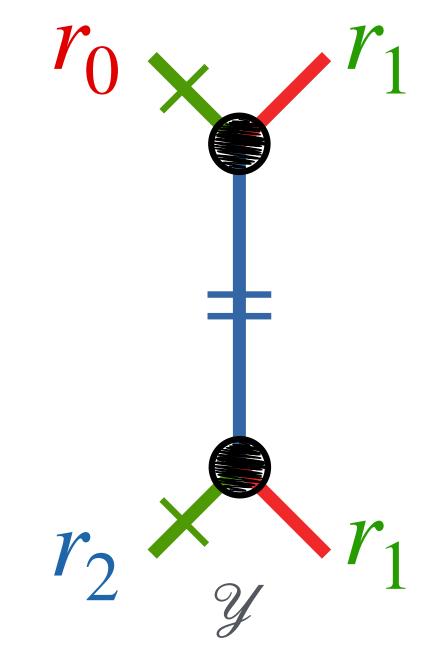


 $\eta: W_m \to \mathscr{Y}$

n-premaniplex

voltage assignment

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

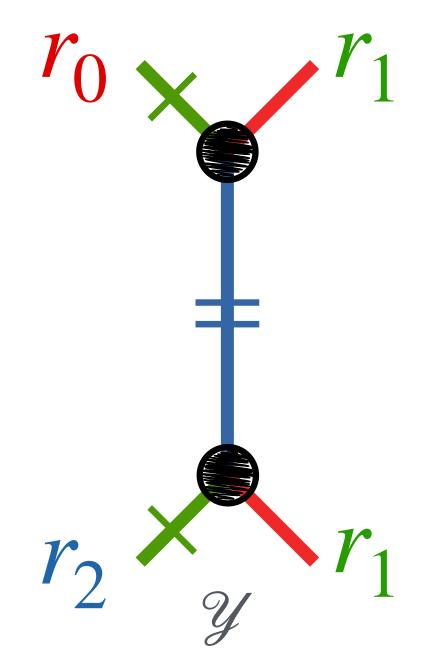


 $\eta: W_m \to \mathscr{Y}$

n-premaniplex

voltage assignment

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)



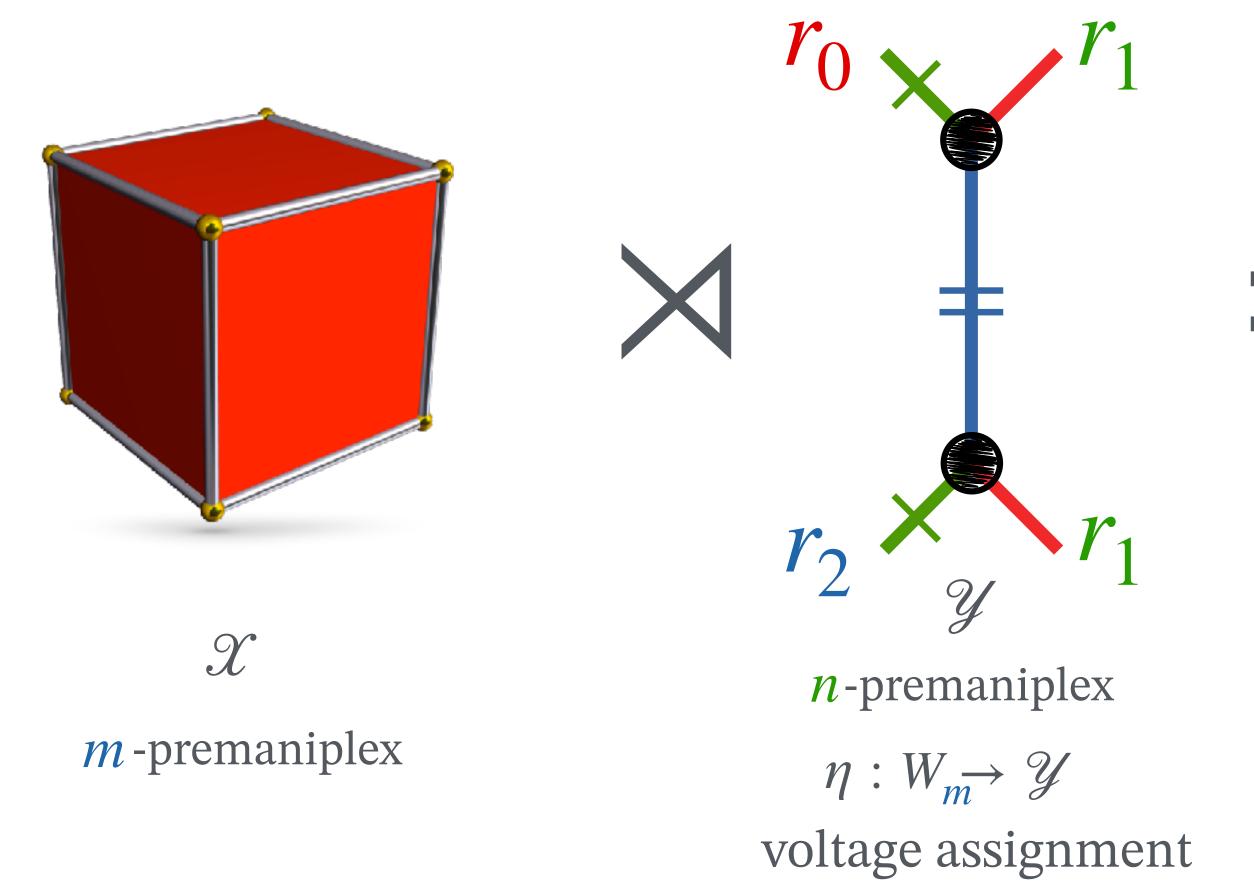
- $\eta: W_m \to \mathscr{Y}$

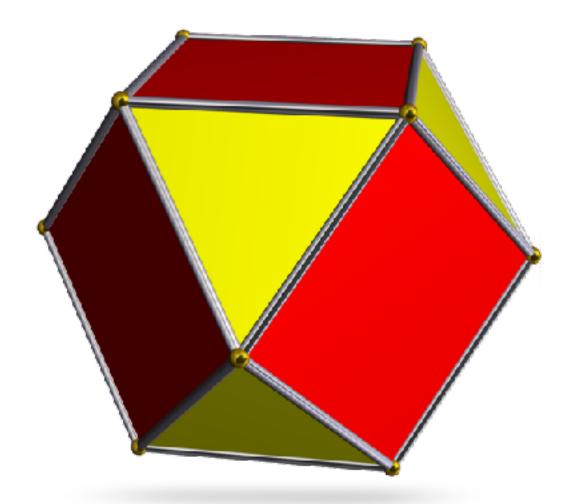
m-premaniplex

n-premaniplex

voltage assignment

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

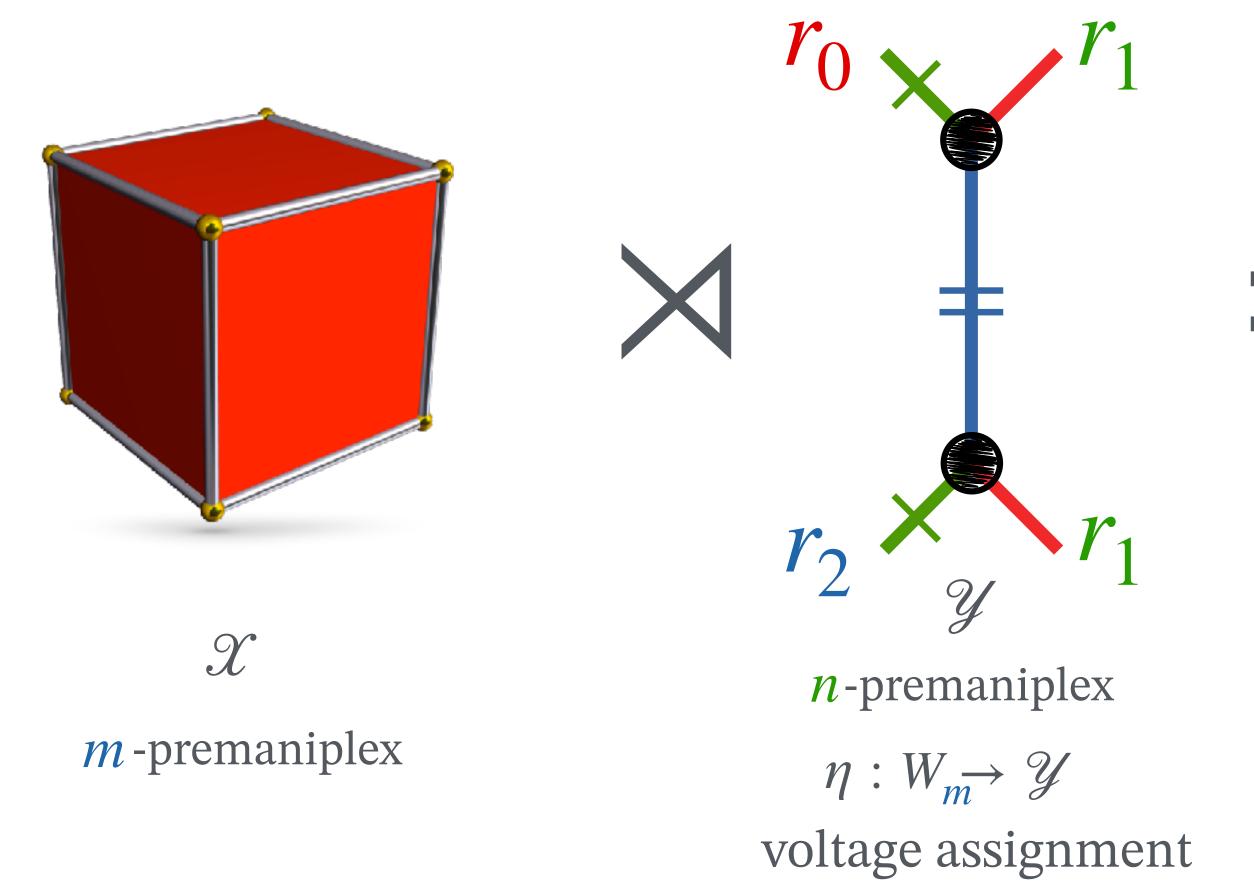


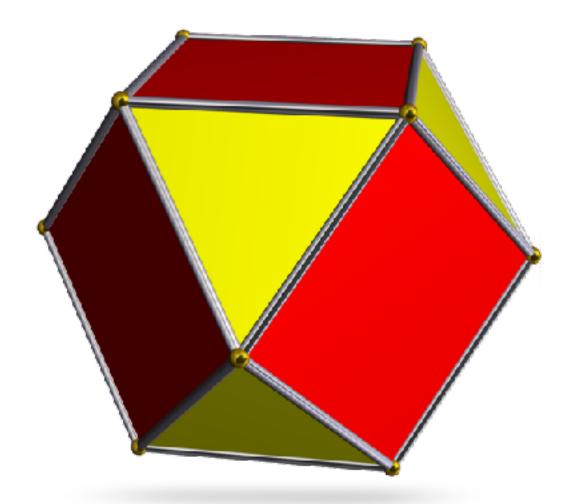


 $\mathcal{X} \rtimes_n \mathcal{Y}$

n-premaniplex

• An (m, n)- voltage operator is a pair (\mathcal{Y}, η)

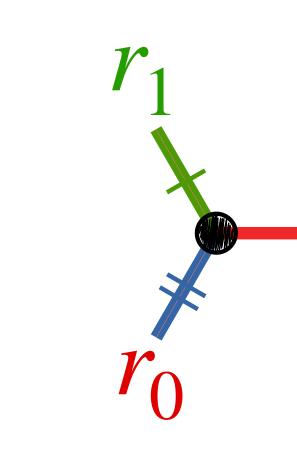




 $\mathcal{X} \rtimes_n \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:



Y *n*-premaniplex

 $\eta: W_m \to \mathscr{Y}$ voltage assignment

 \mathcal{X}

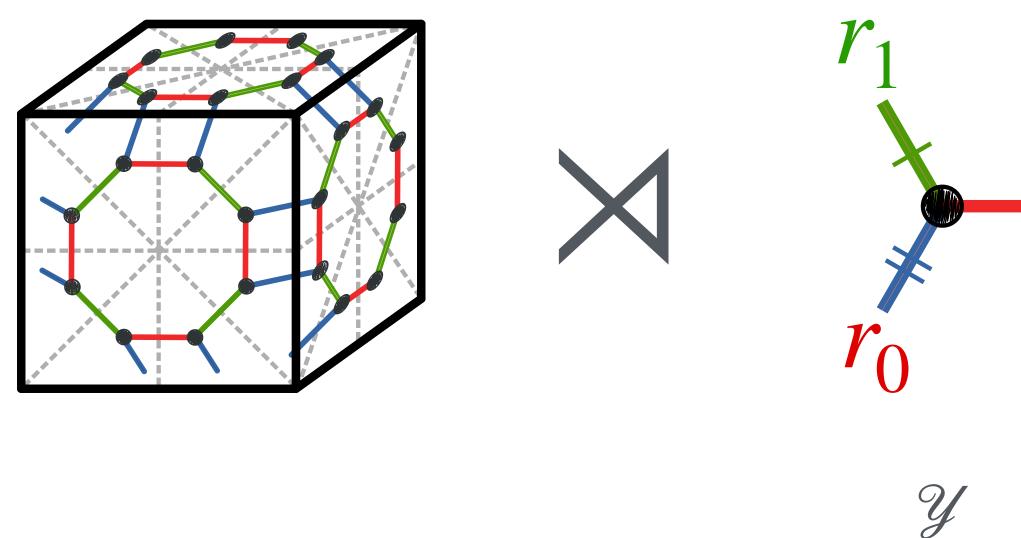
m-premaniplex

 r_2

 $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:



X

m-premaniplex

n-premaniplex

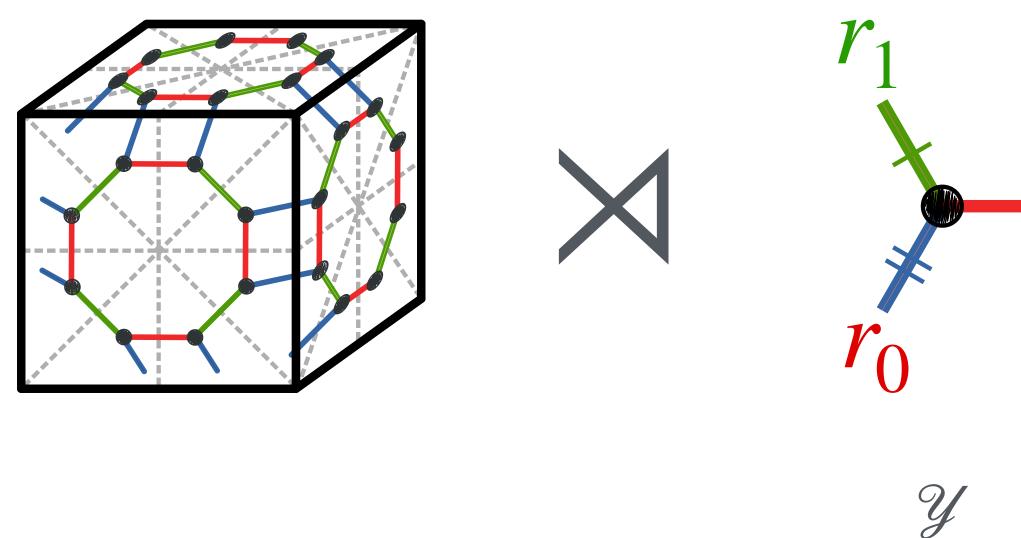
 $\eta: W_m \to \mathscr{Y}$ voltage assignment

 r_2

 $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

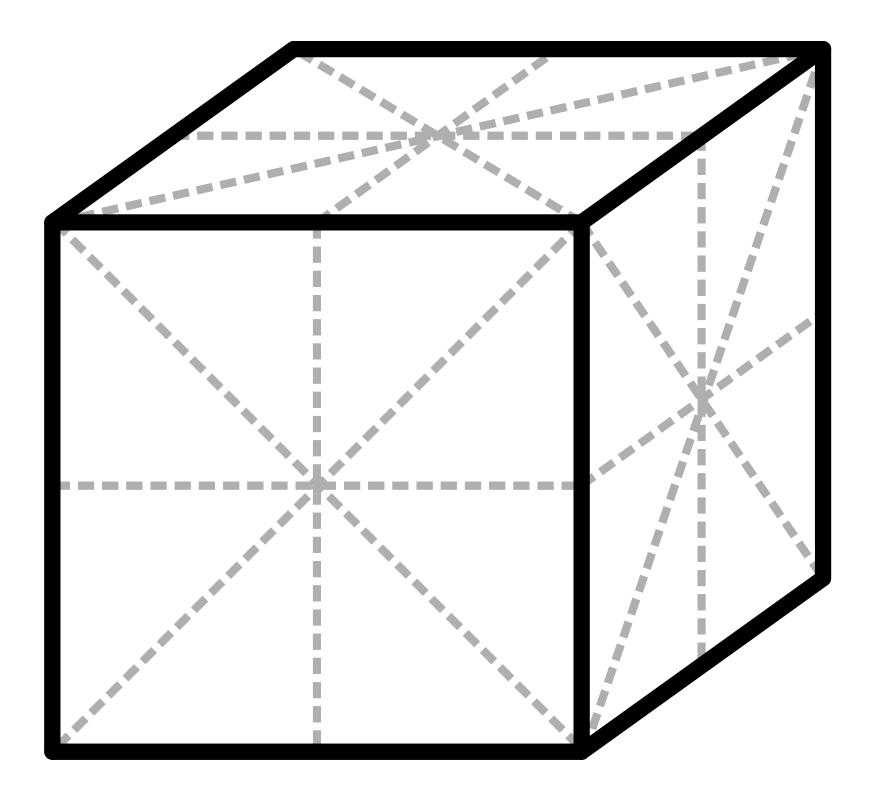


 \mathscr{X}

m-premaniplex

n-premaniplex

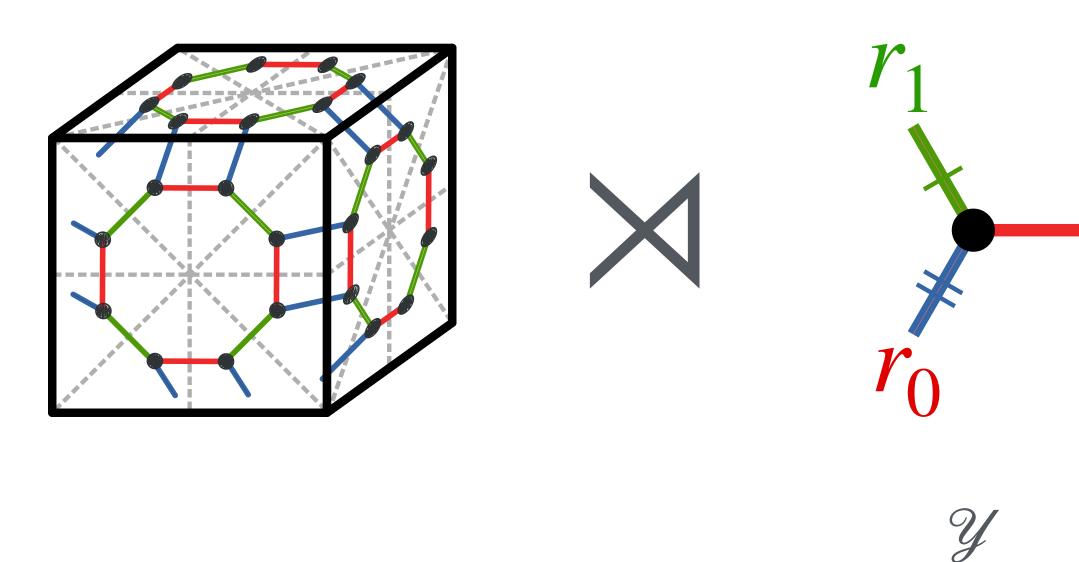
 $\eta: W_m \to \mathcal{Y}$ voltage assignment



 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

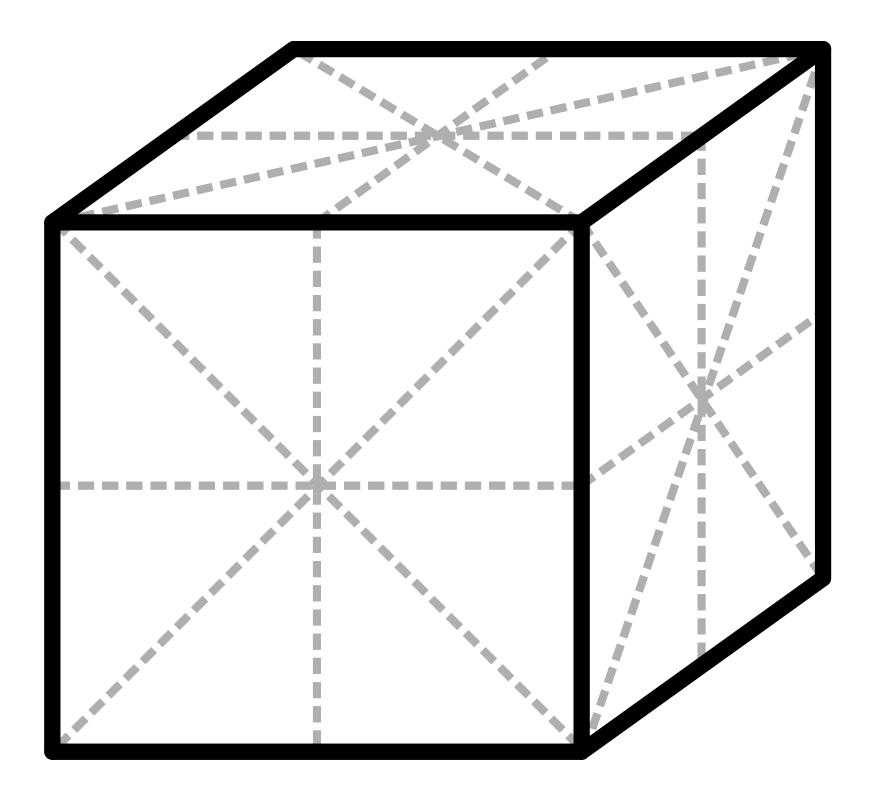


 \mathscr{X}

m-premaniplex

n-premaniplex

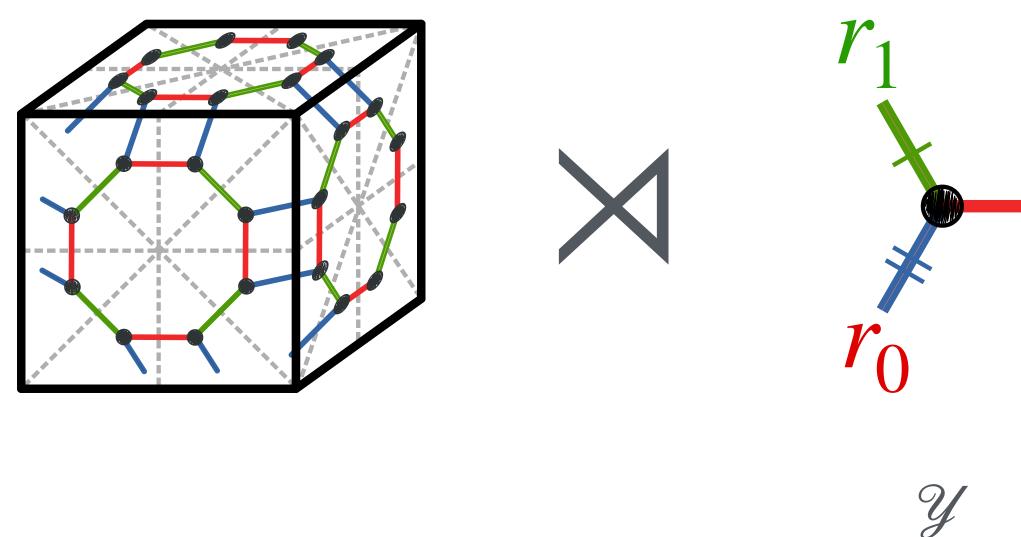
 $\eta: W_m \to \mathcal{Y}$ voltage assignment



 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

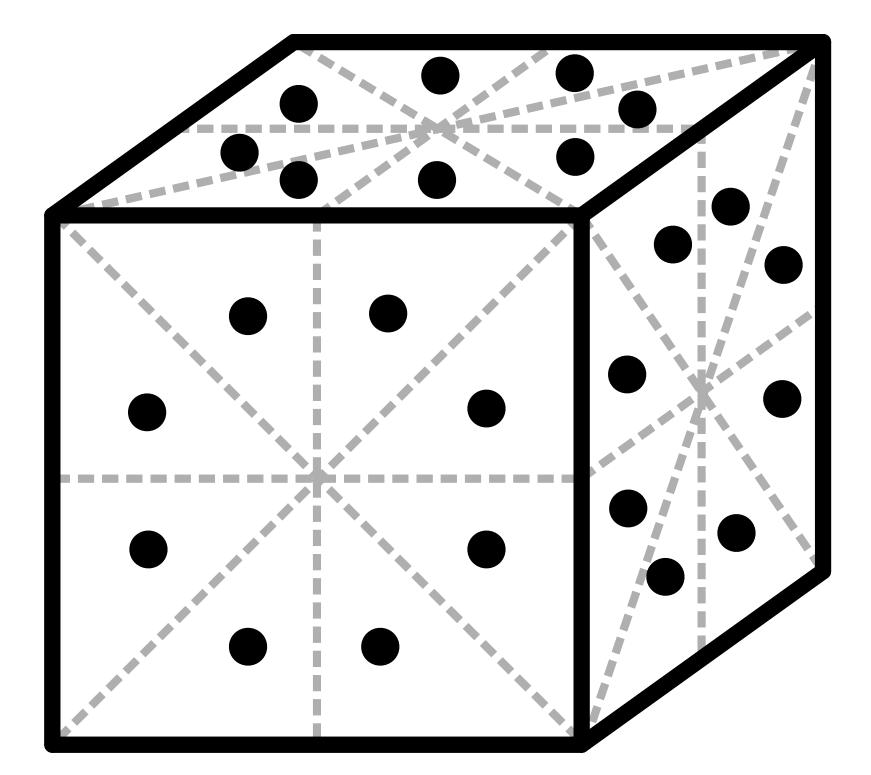


 \mathscr{X}

m-premaniplex

n-premaniplex

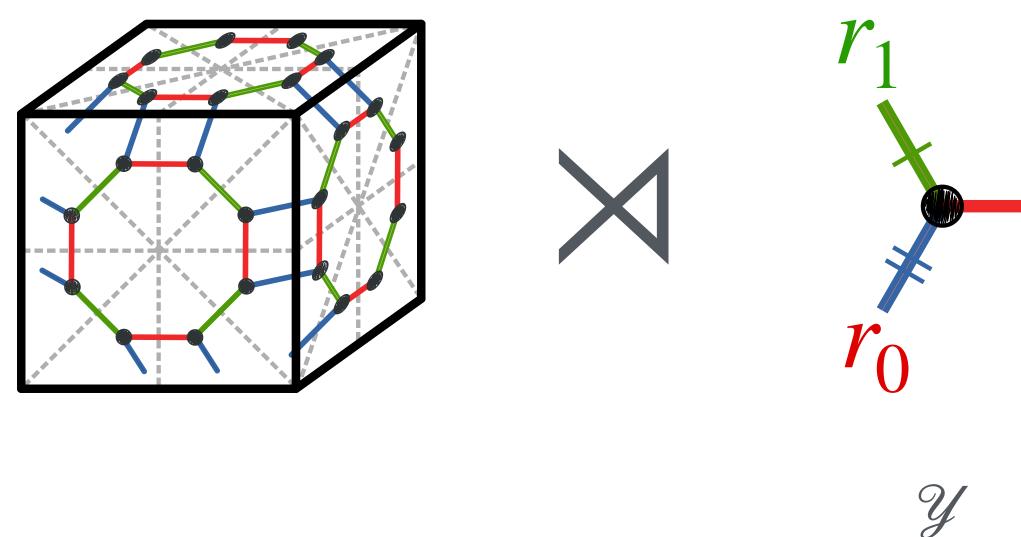
 $\eta: W_m \to \mathcal{Y}$ voltage assignment



 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

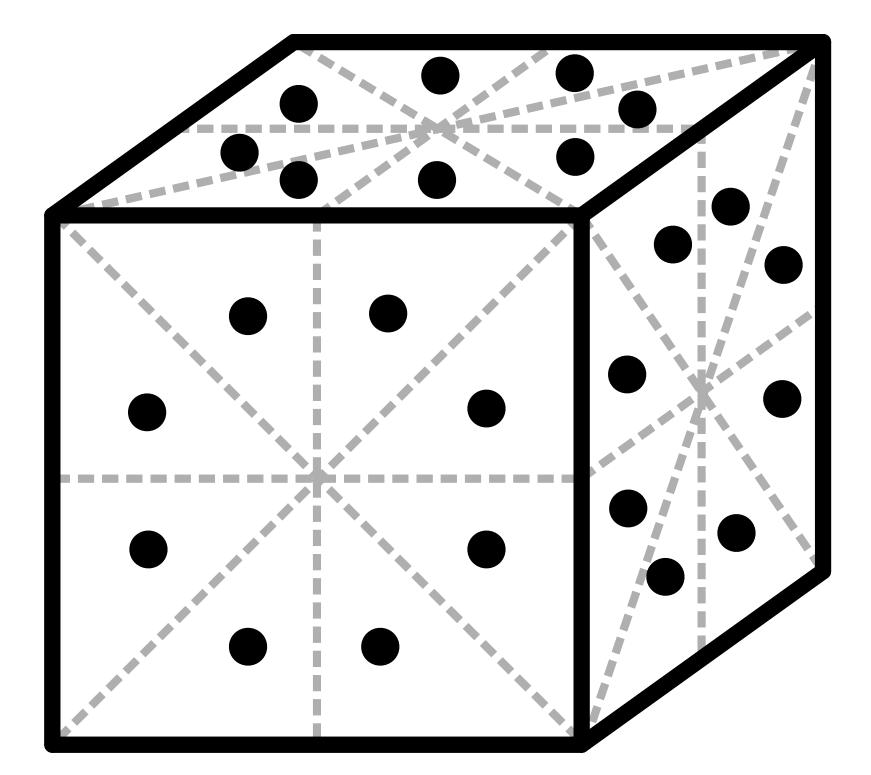


 \mathscr{X}

m-premaniplex

n-premaniplex

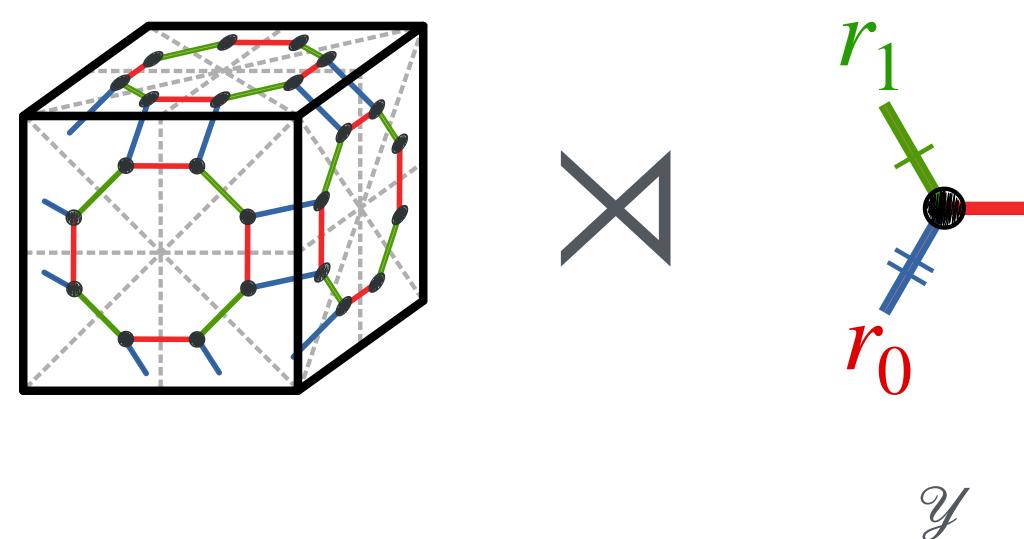
 $\eta: W_m \to \mathcal{Y}$ voltage assignment



 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

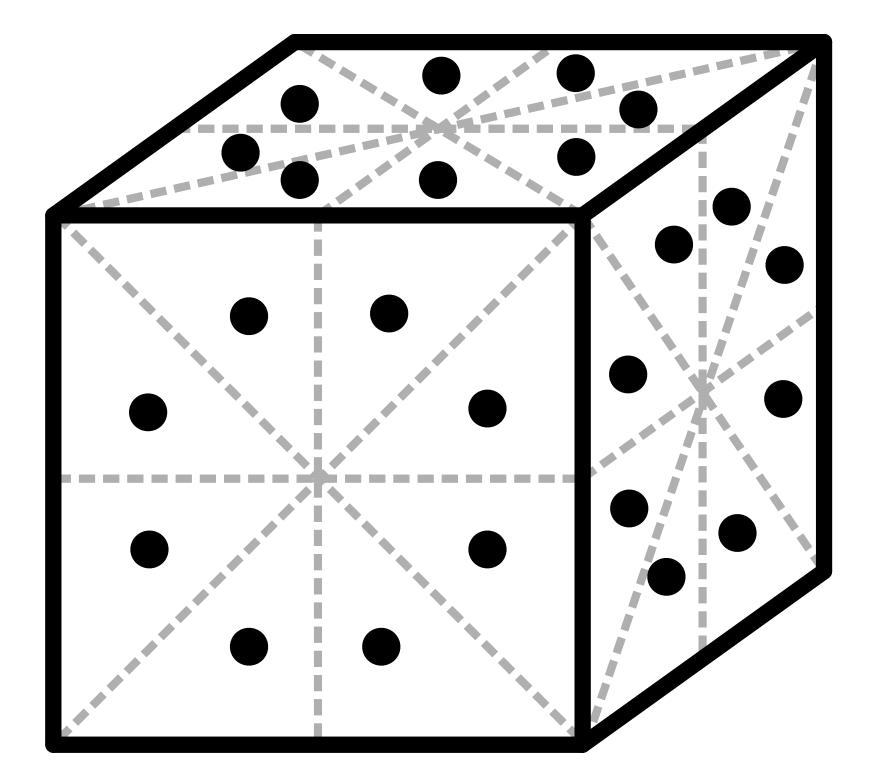


 \mathscr{X}

m-premaniplex

n-premaniplex

 $\eta: W_m \to \mathcal{Y}$ voltage assignment

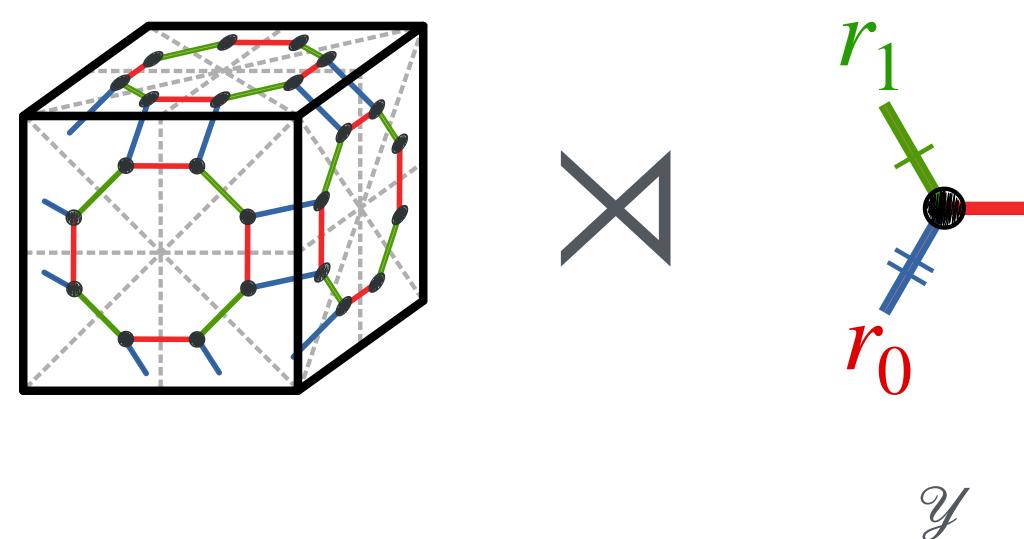


 r_{γ}

 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

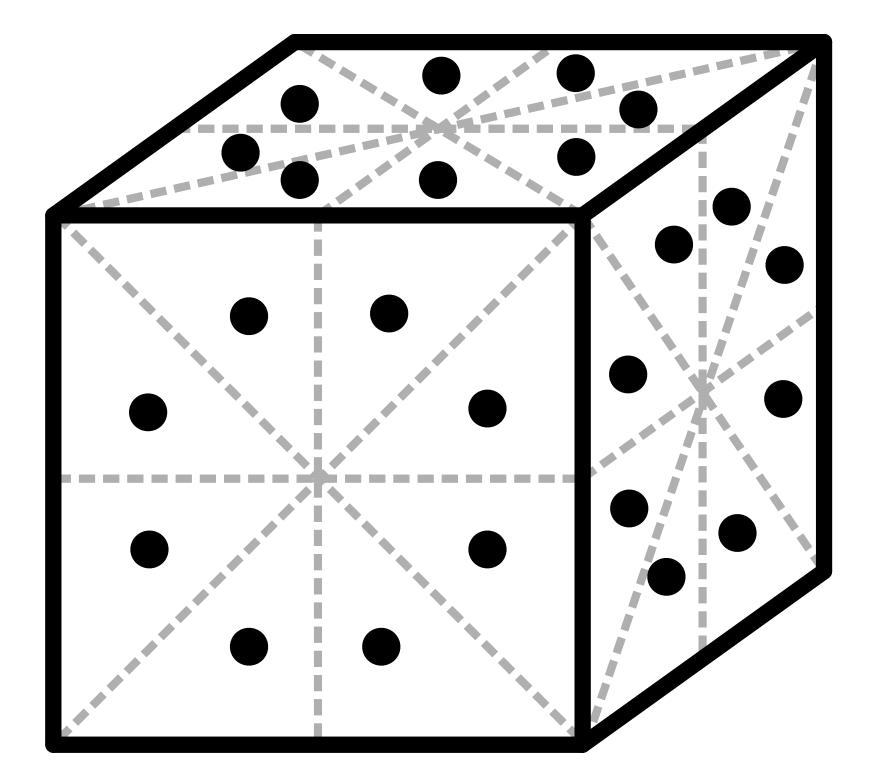


 \mathscr{X}

m-premaniplex

n-premaniplex

 $\eta: W_m \to \mathcal{Y}$ voltage assignment

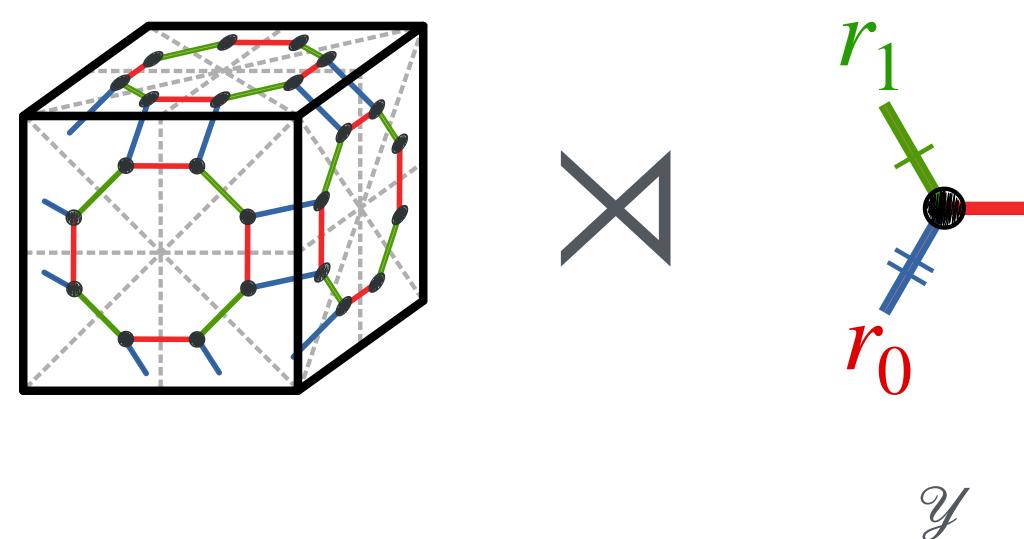


 r_{γ}

 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

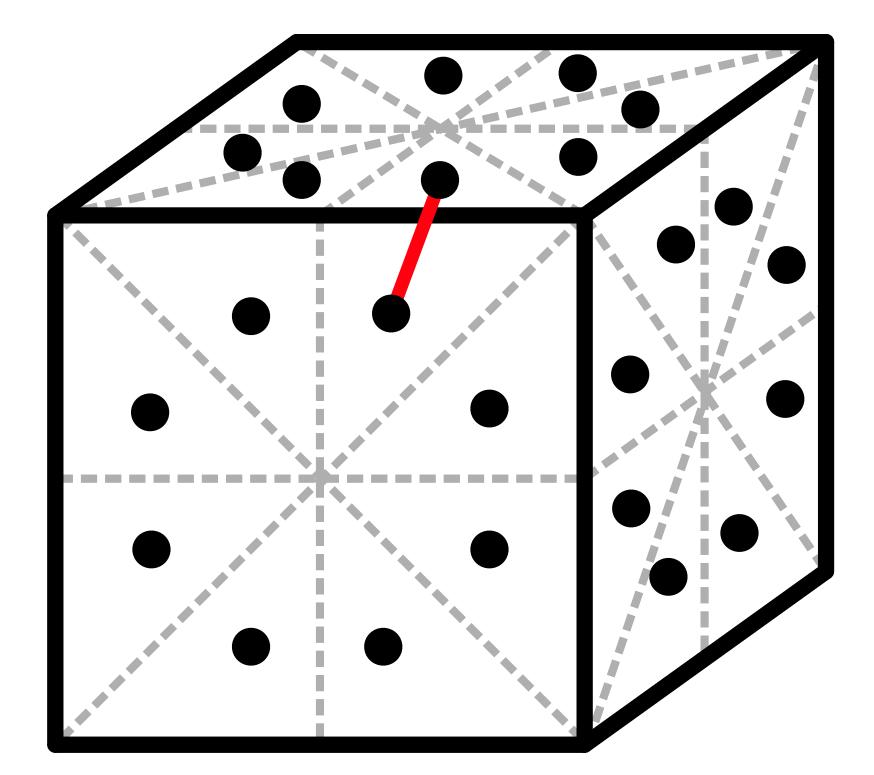


 \mathscr{X}

m-premaniplex

n-premaniplex

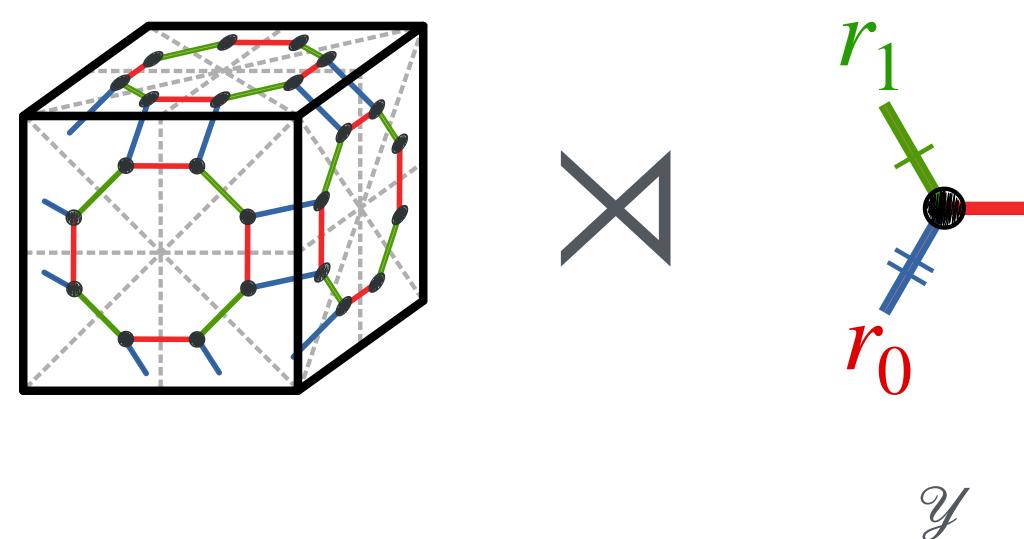
 $\eta: W_m \to \mathcal{Y}$ voltage assignment



 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

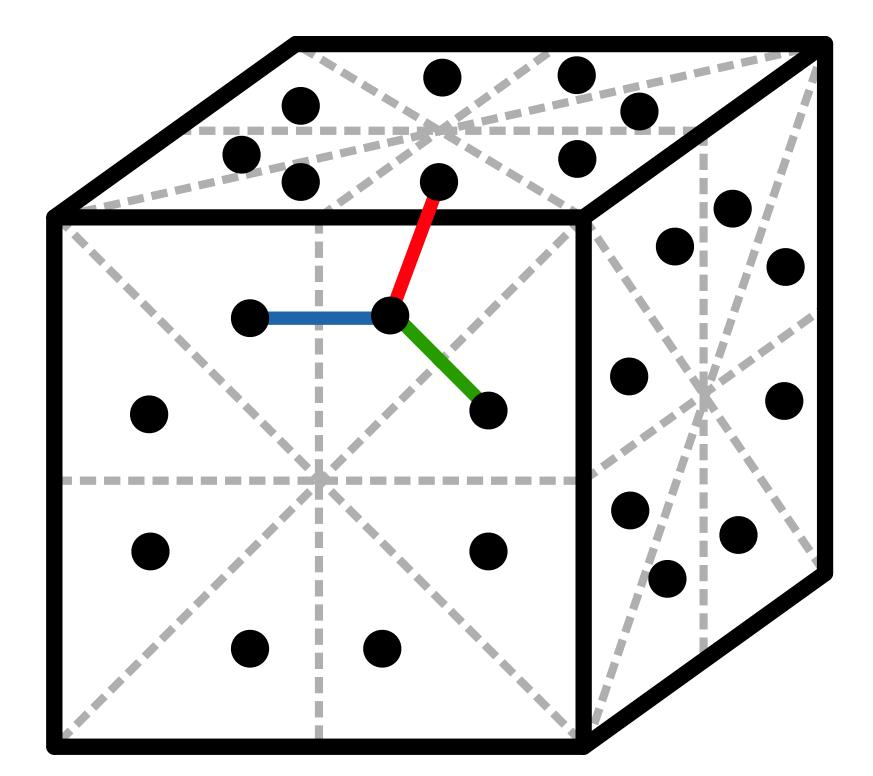


 \mathscr{X}

m-premaniplex

n-premaniplex

 $\eta: W_m \to \mathcal{Y}$ voltage assignment

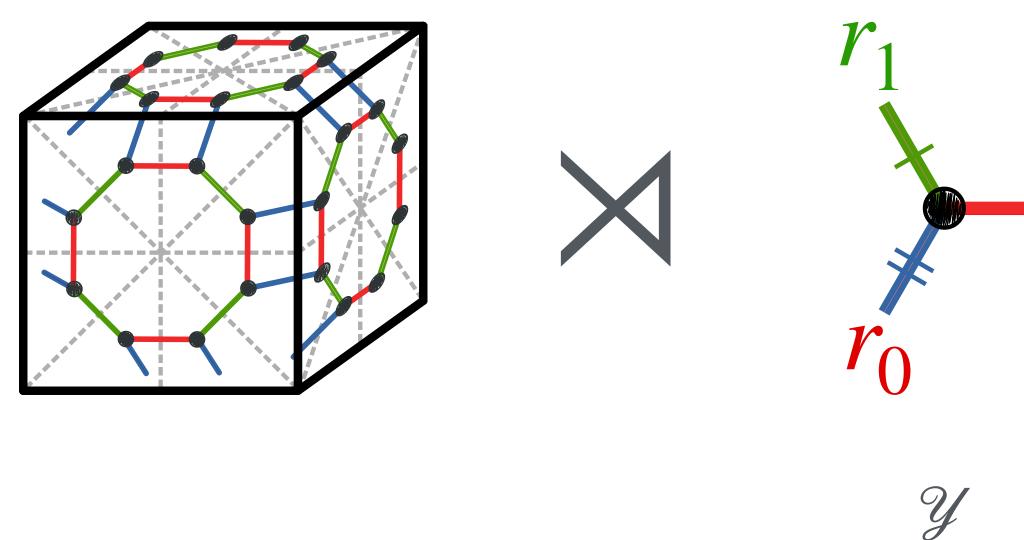


 r_{γ}

 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

n-premaniplex

• An (*m*, *n*)- voltage operation:

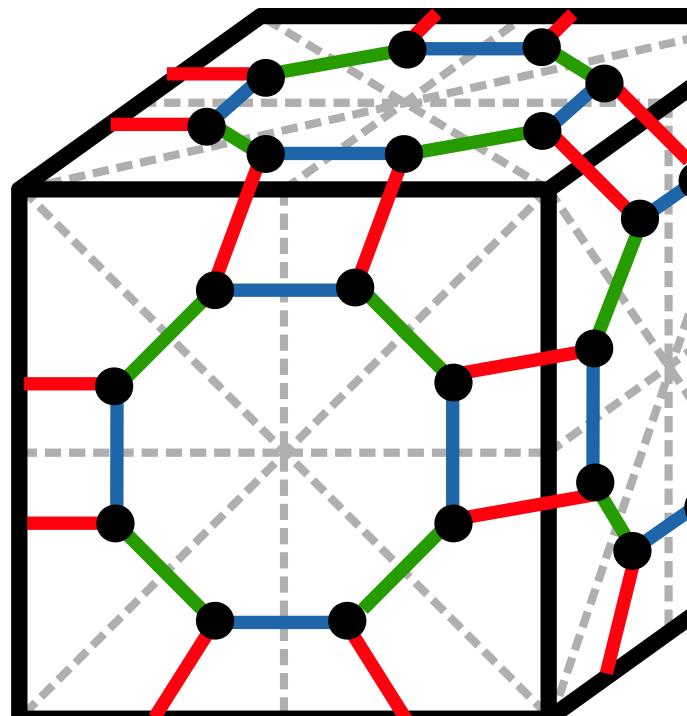


 \mathscr{X}

m-premaniplex

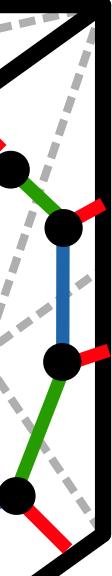
n-premaniplex

 $\eta: W_m \to \mathscr{Y}$ voltage assignment

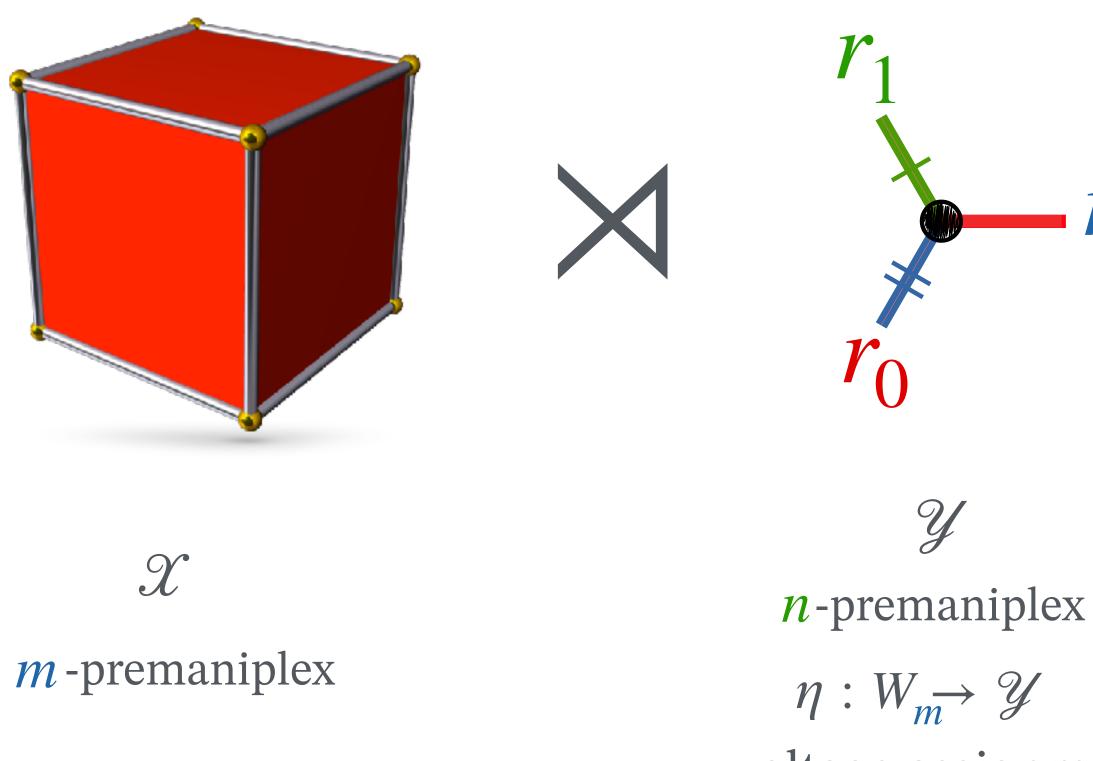


 r_2

 $\mathscr{X} \Join_{\eta} \mathscr{Y}$

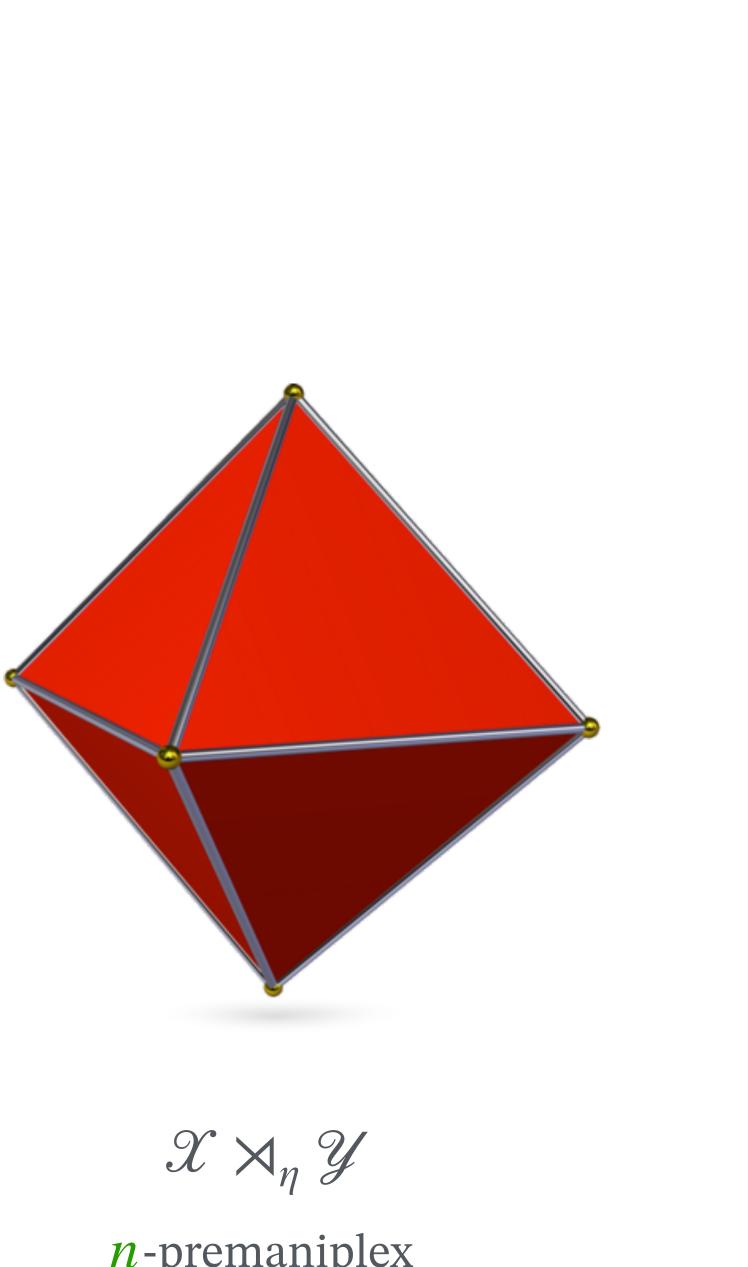


• An (*m*, *n*)- voltage operation:

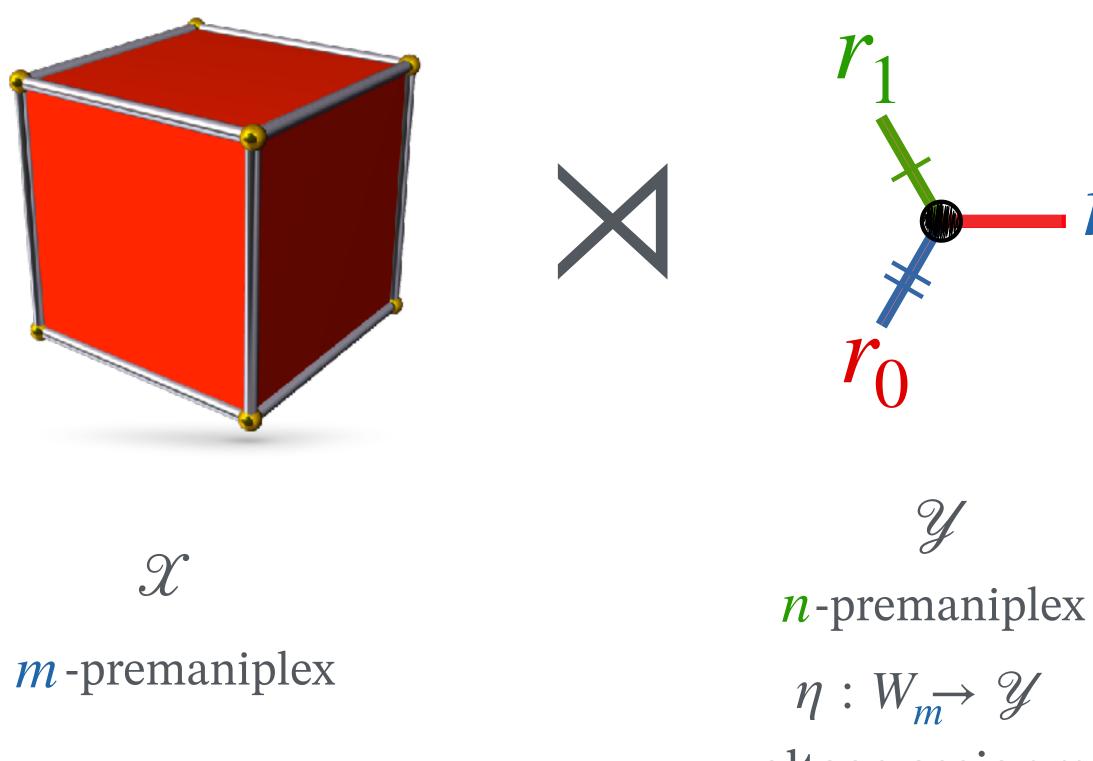


 r_2

voltage assignment

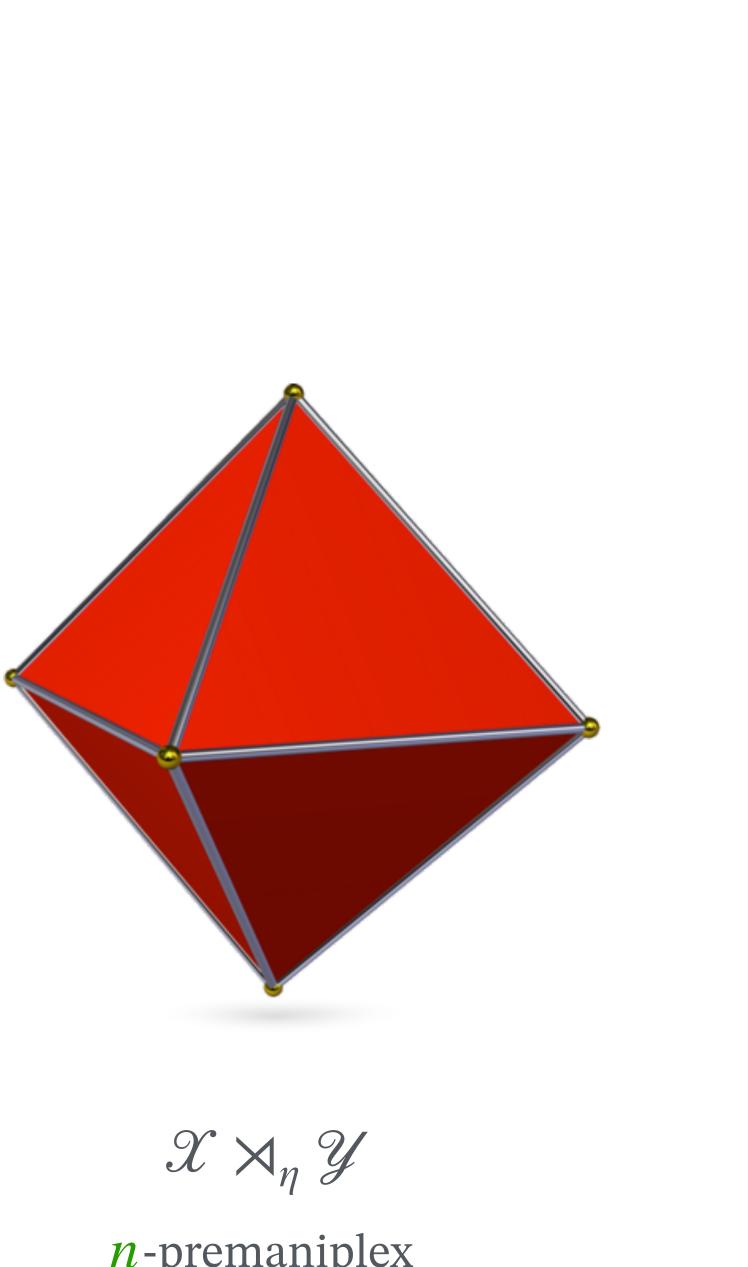


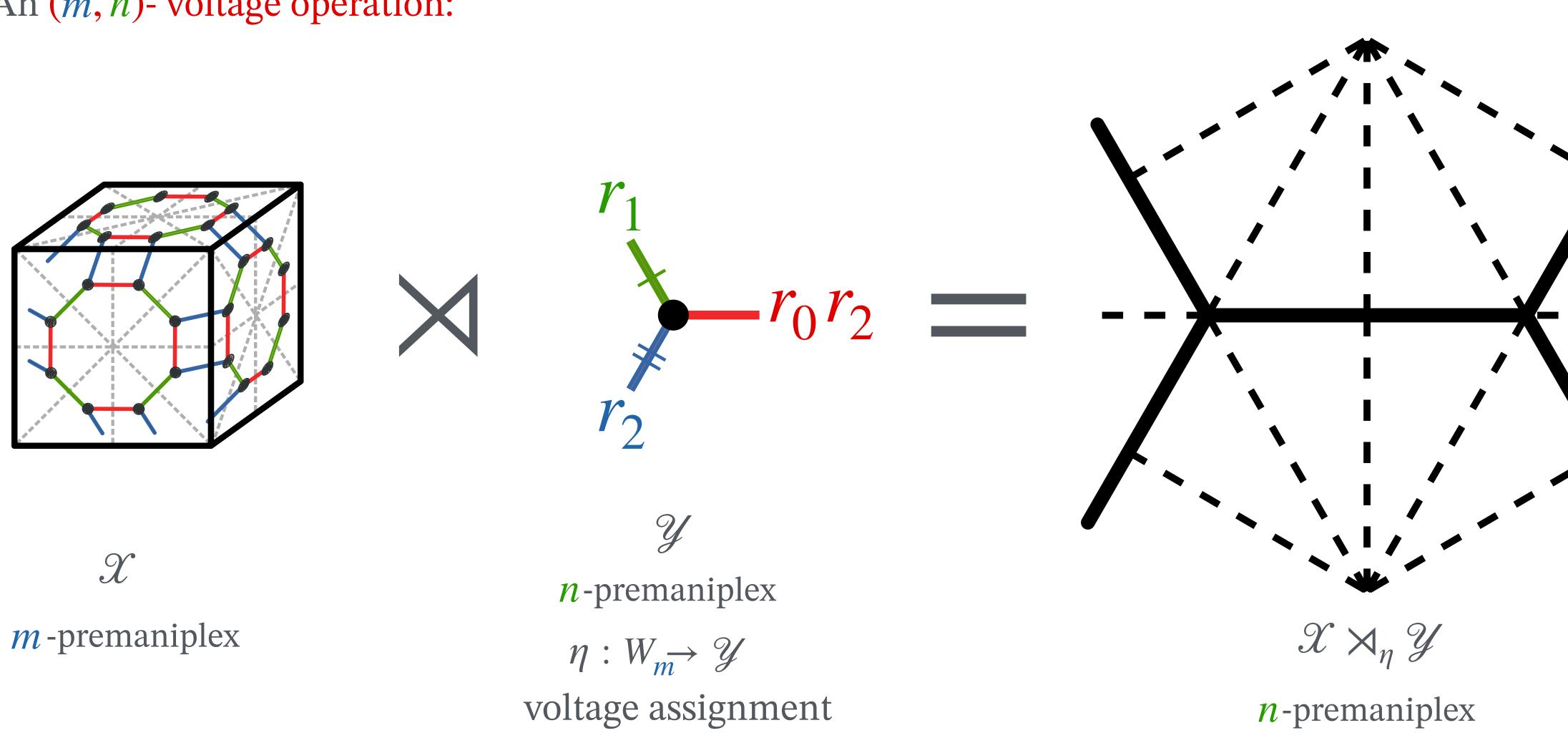
• An (*m*, *n*)- voltage operation:

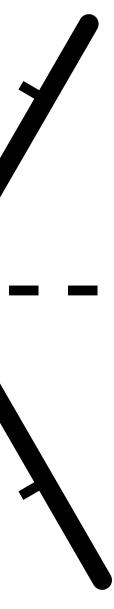


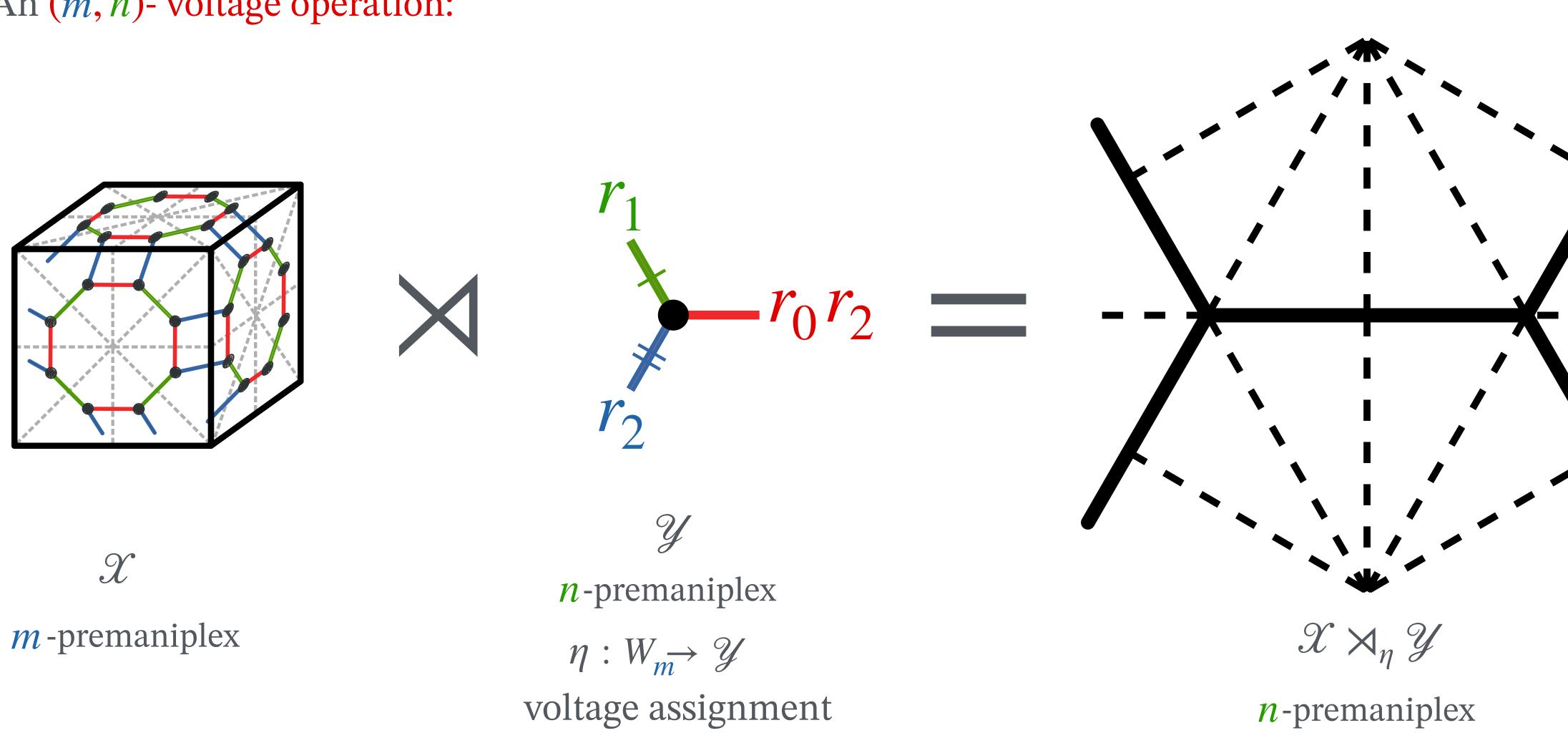
 r_2

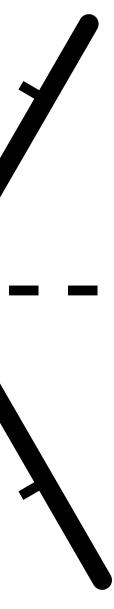
voltage assignment

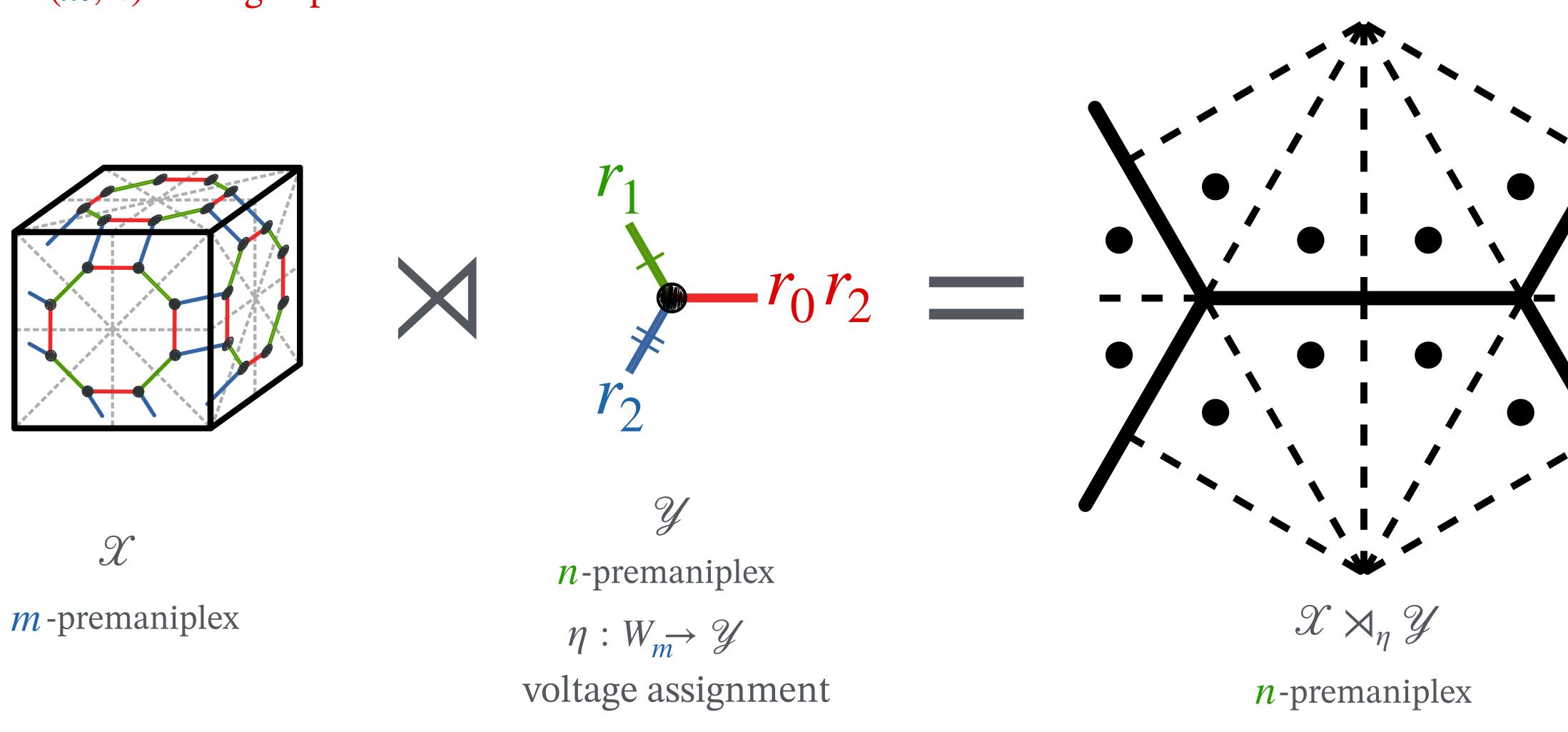


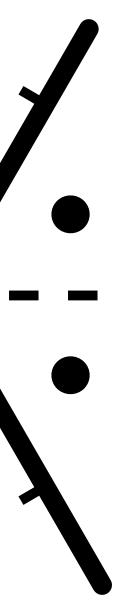


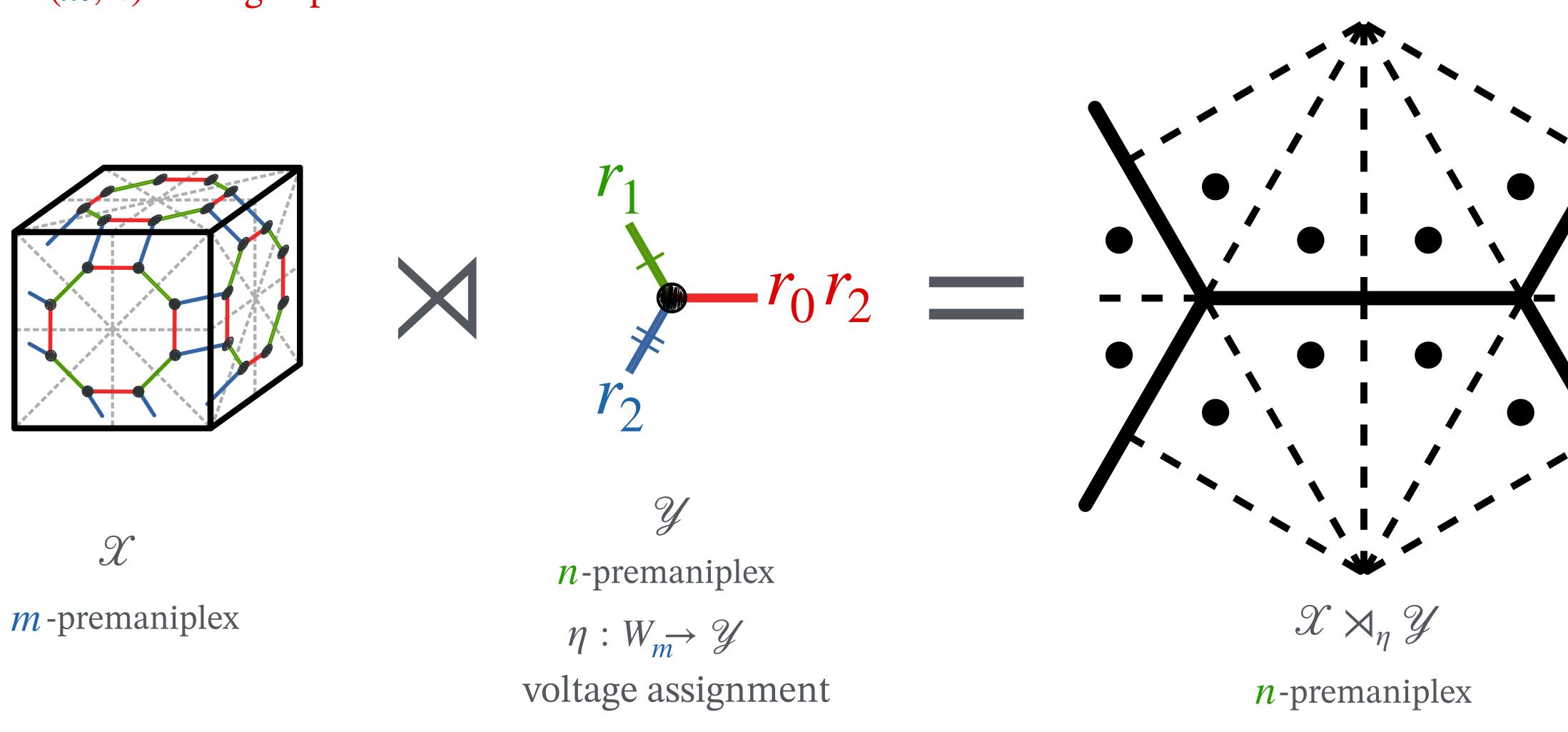


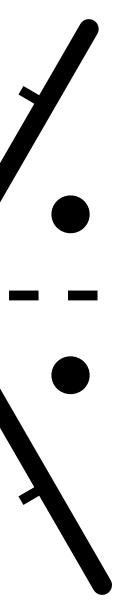


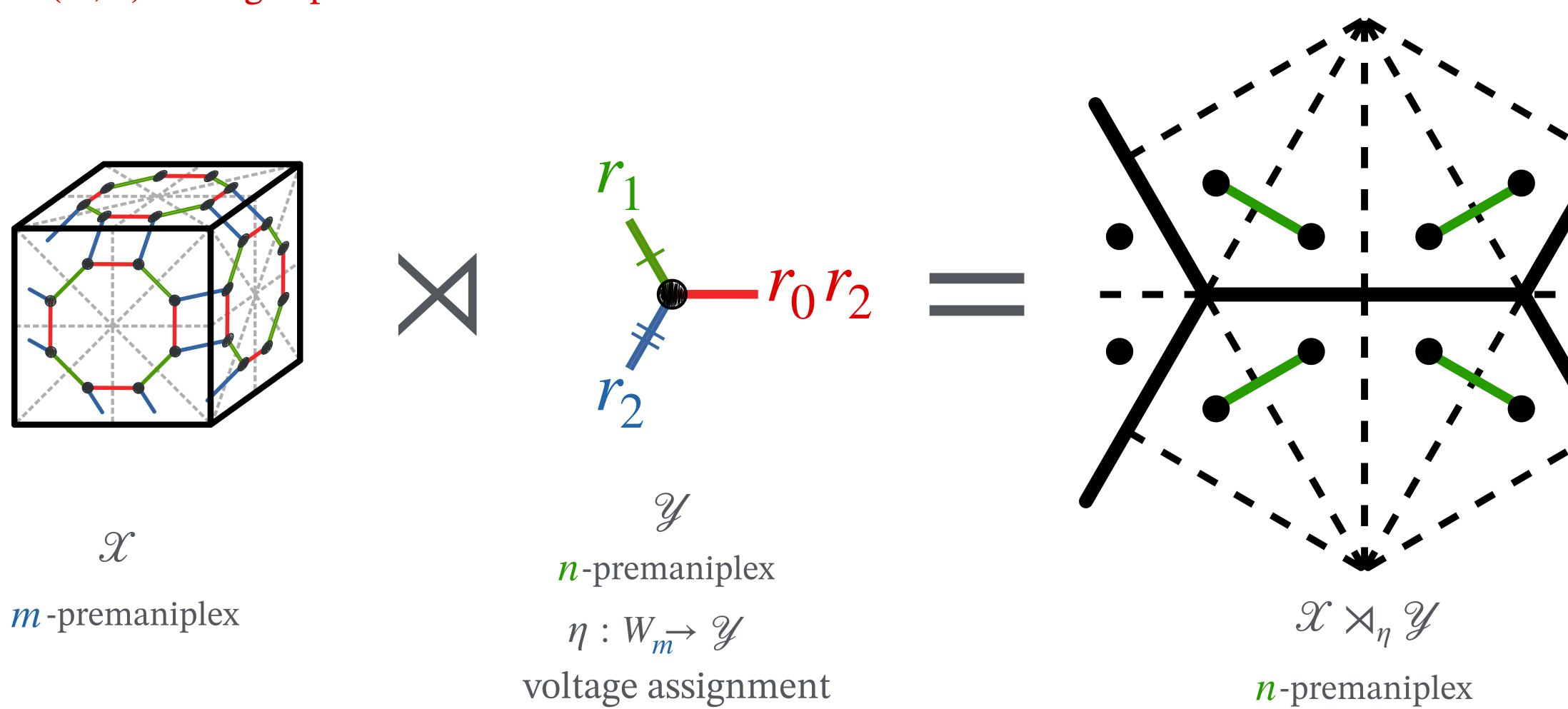


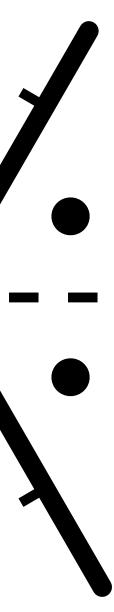




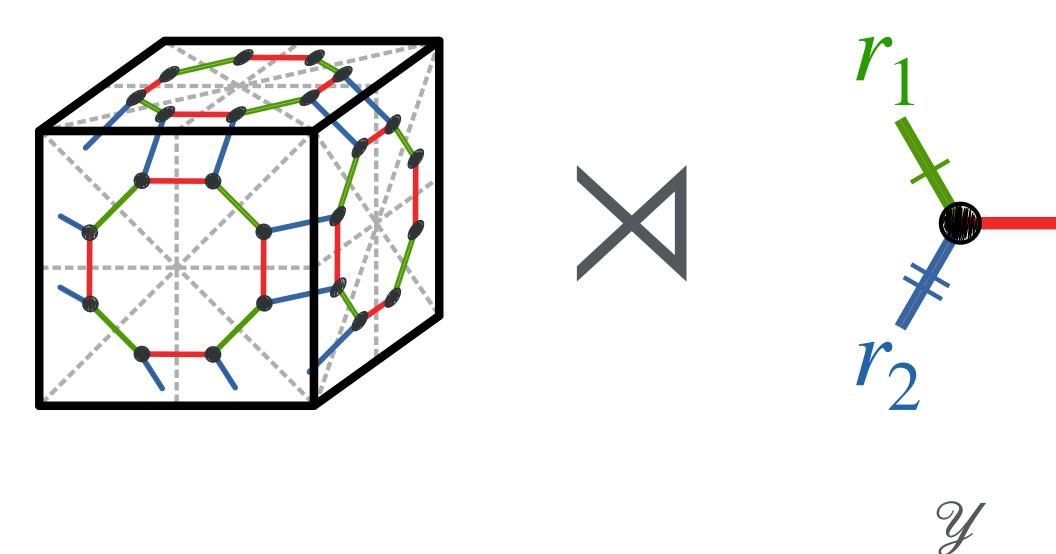








• An (*m*, *n*)- voltage operation:



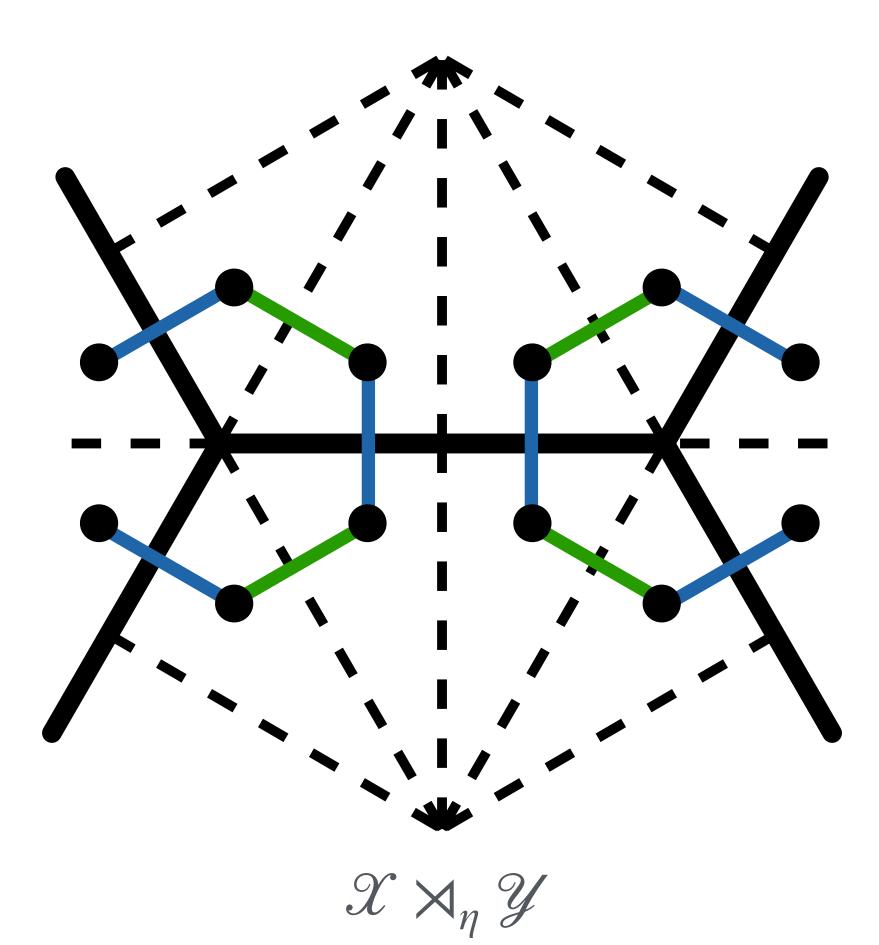
 \mathcal{X}

m-premaniplex

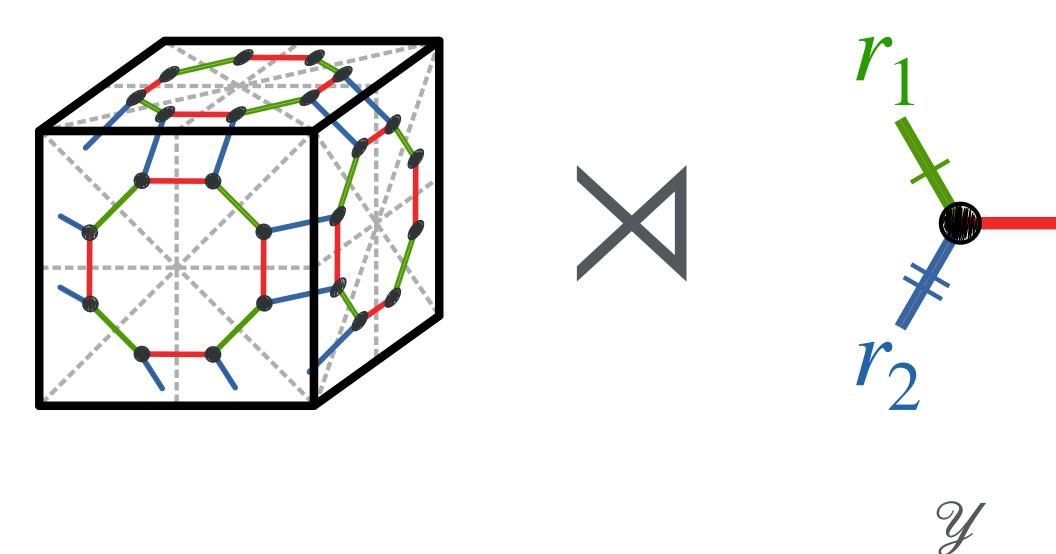
n-premaniplex

 $\eta: W_m \to \mathscr{Y}$ voltage assignment

 $r_0 r_2$



• An (*m*, *n*)- voltage operation:



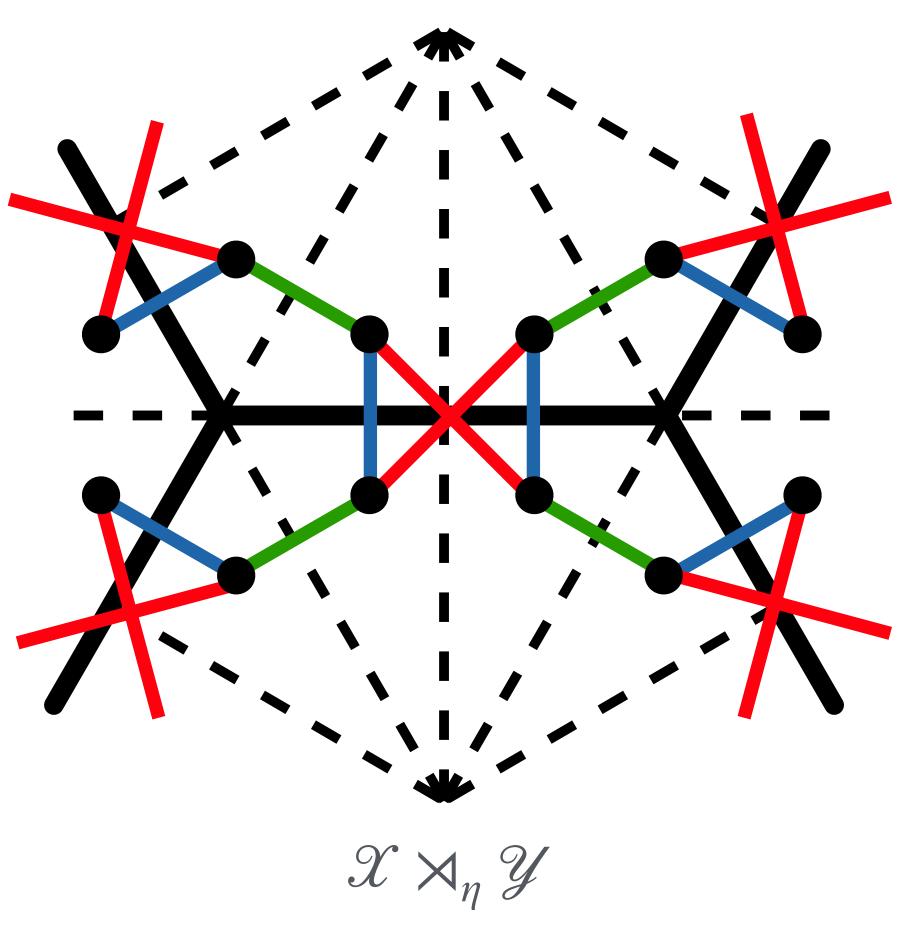
 \mathcal{X}

m-premaniplex

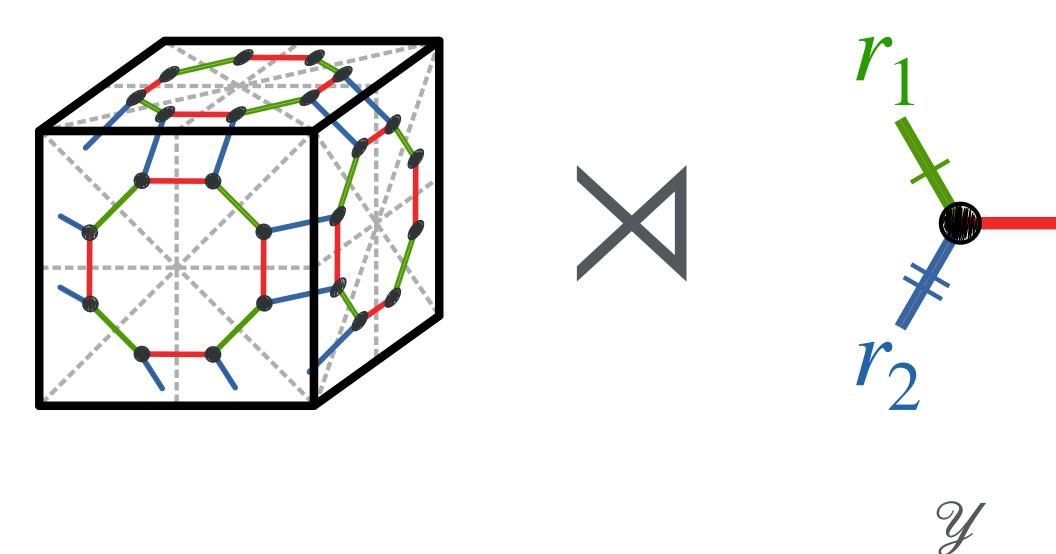
n-premaniplex

 $\eta: W_m \to \mathscr{Y}$ voltage assignment

 $r_0 r_2$



• An (*m*, *n*)- voltage operation:



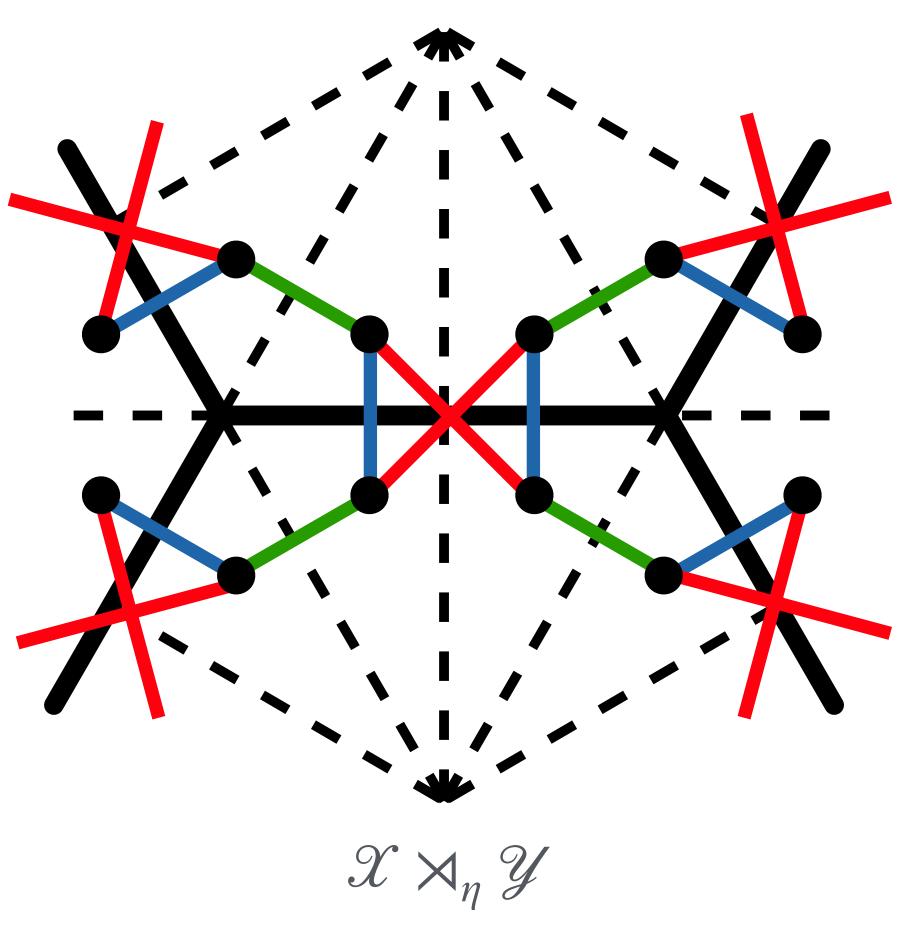
 \mathcal{X}

m-premaniplex

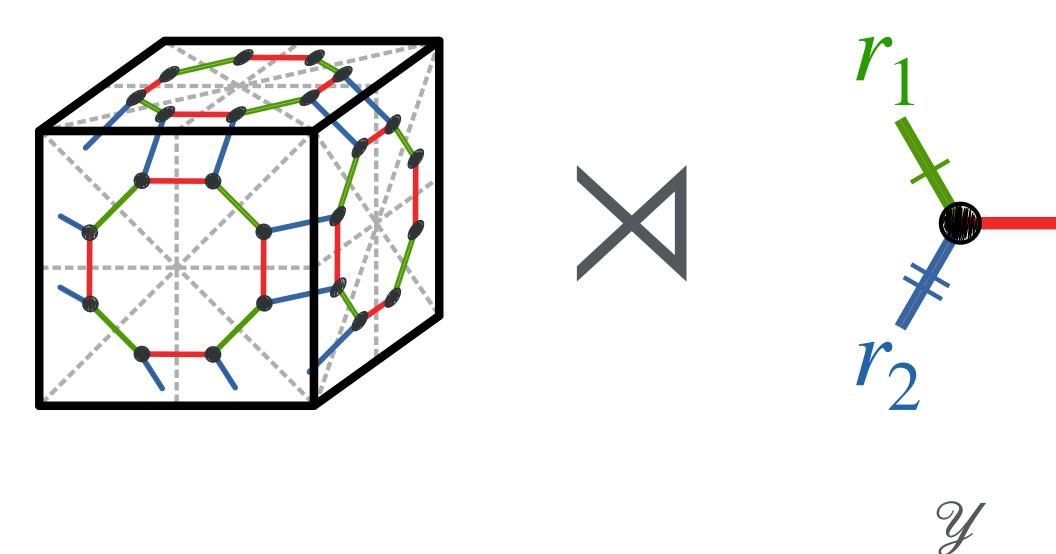
n-premaniplex

 $\eta: W_m \to \mathscr{Y}$ voltage assignment

 $r_0 r_2$



• An (*m*, *n*)- voltage operation:



 \mathcal{X}

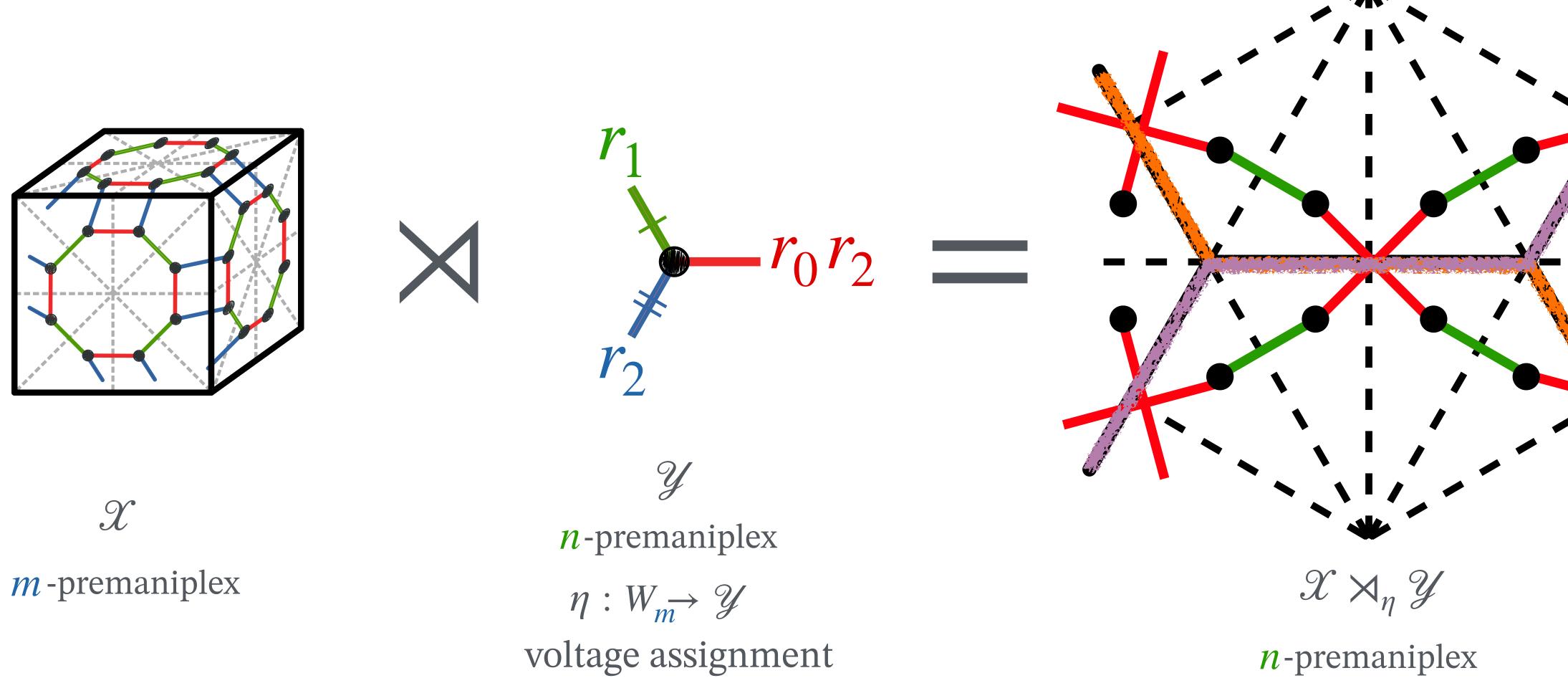
m-premaniplex

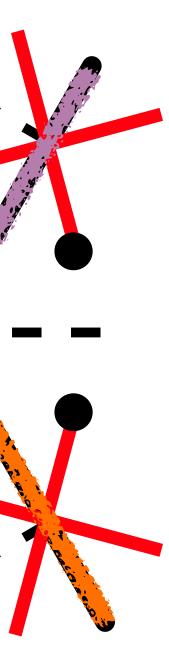
n-premaniplex

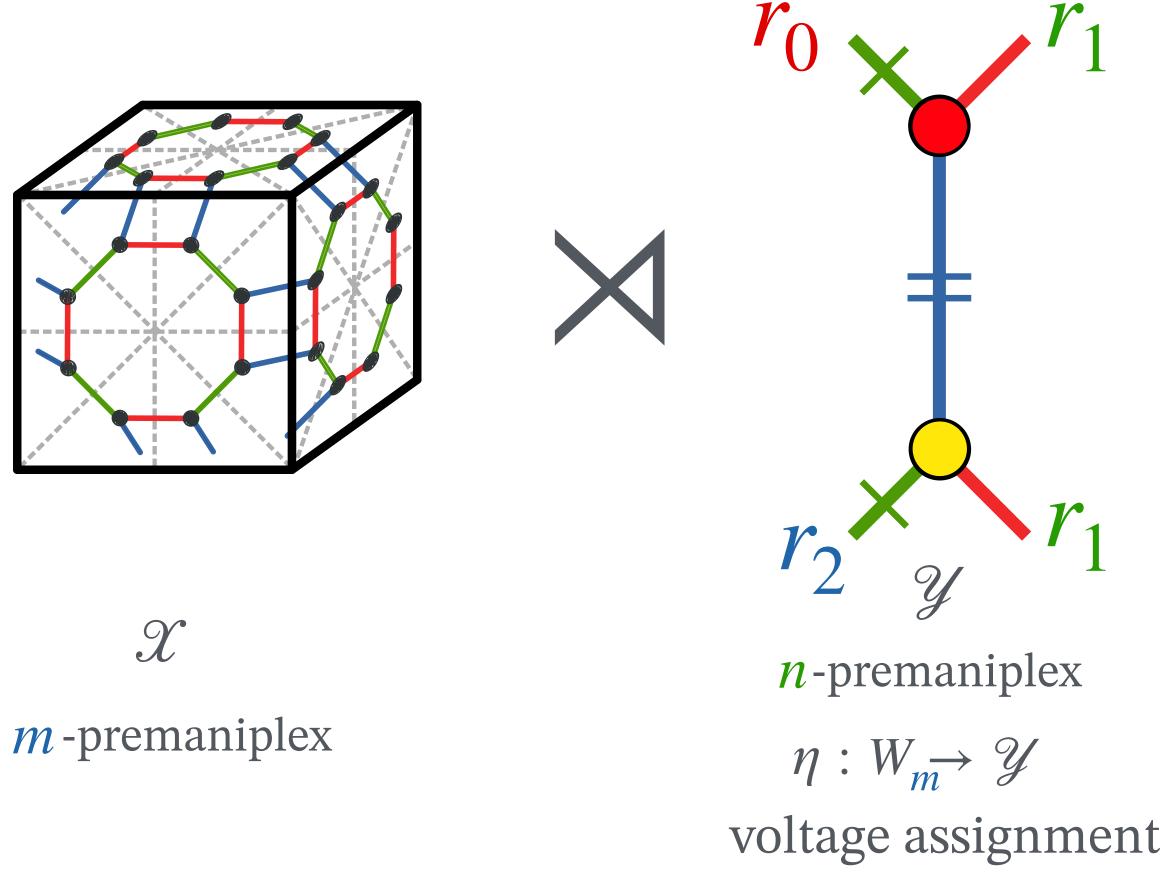
 $\eta: W_m \to \mathscr{Y}$ voltage assignment

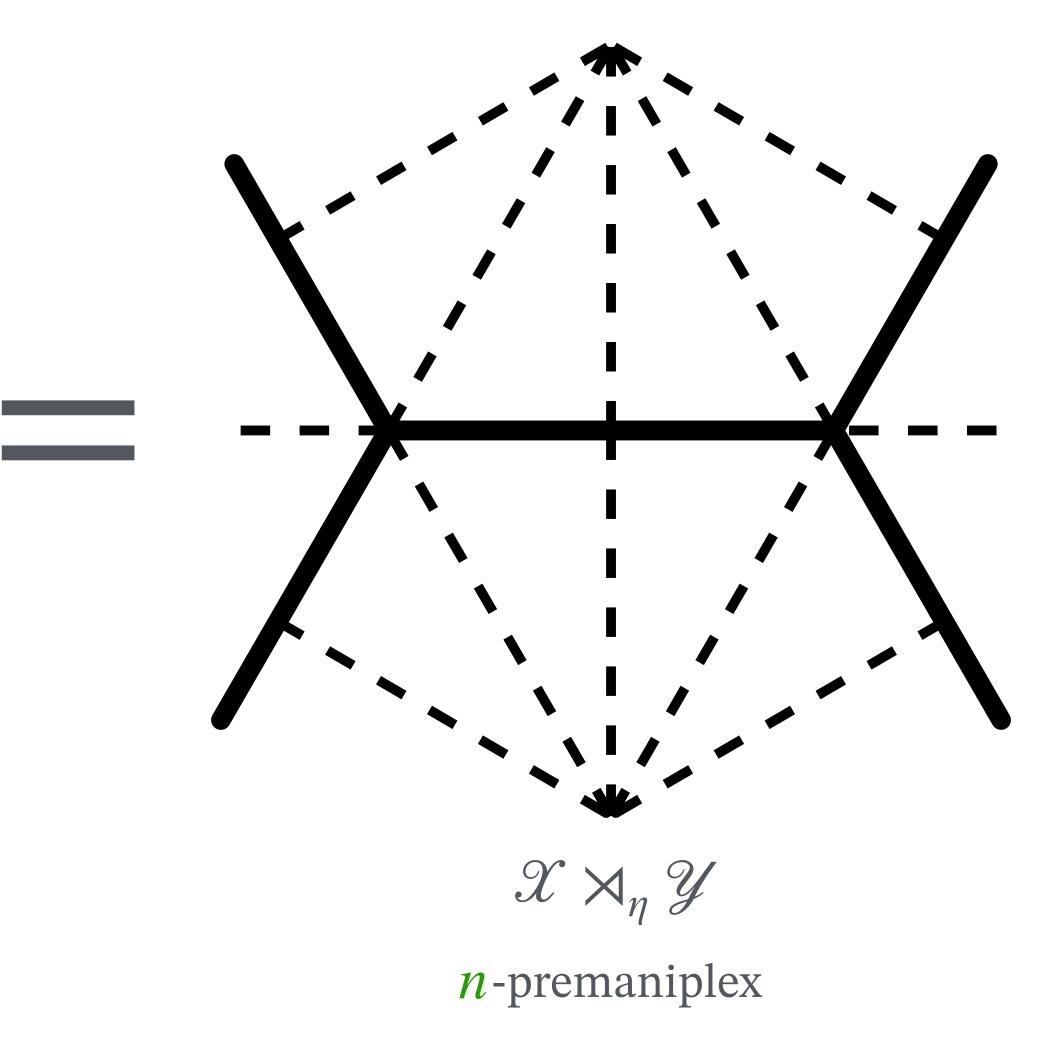
 $r_0 r_2$

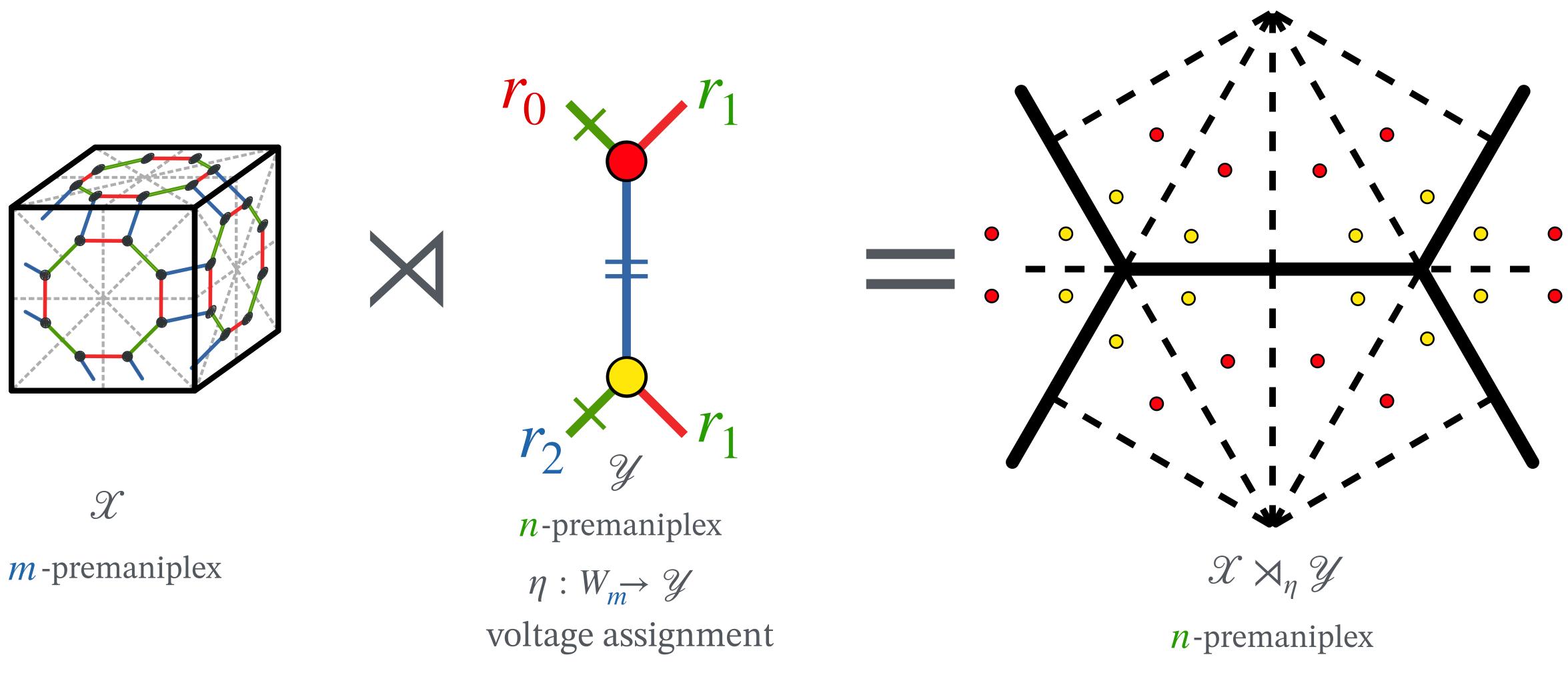


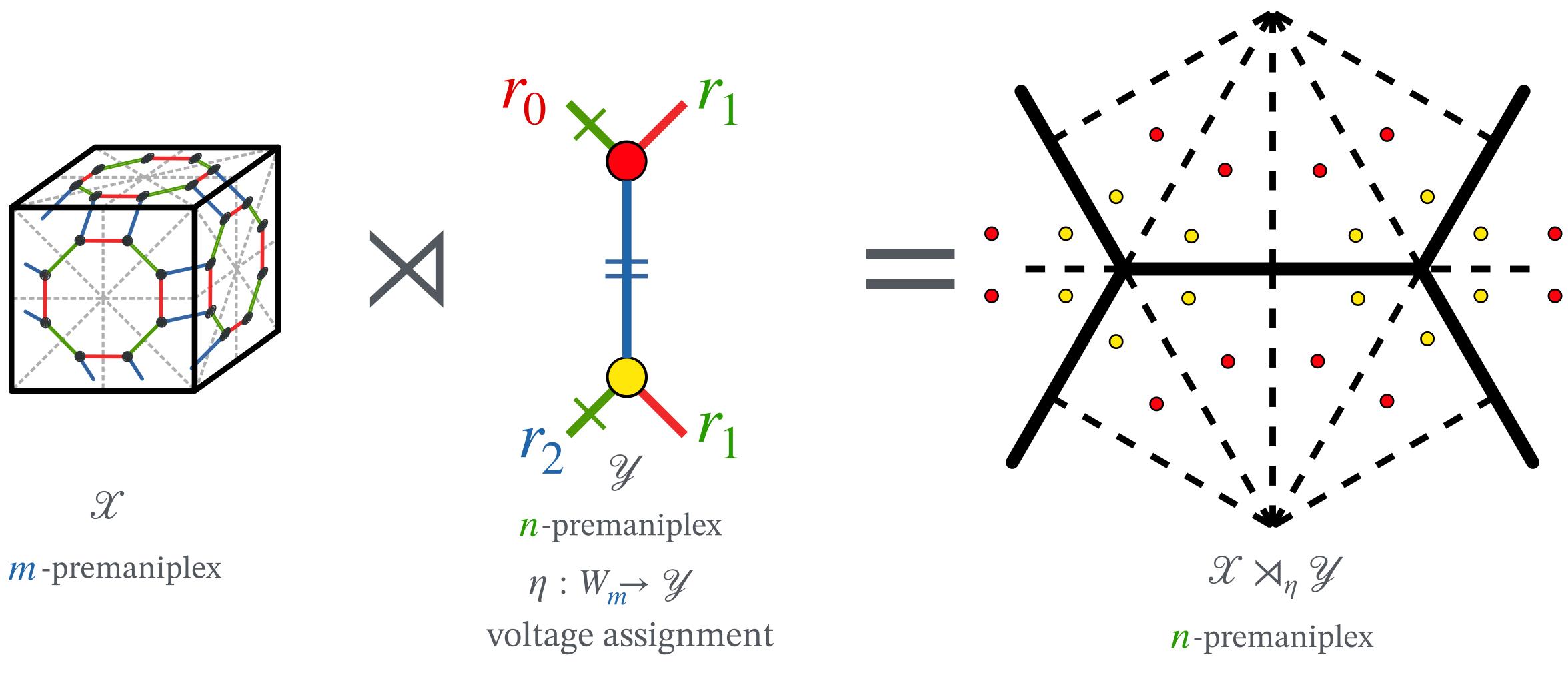


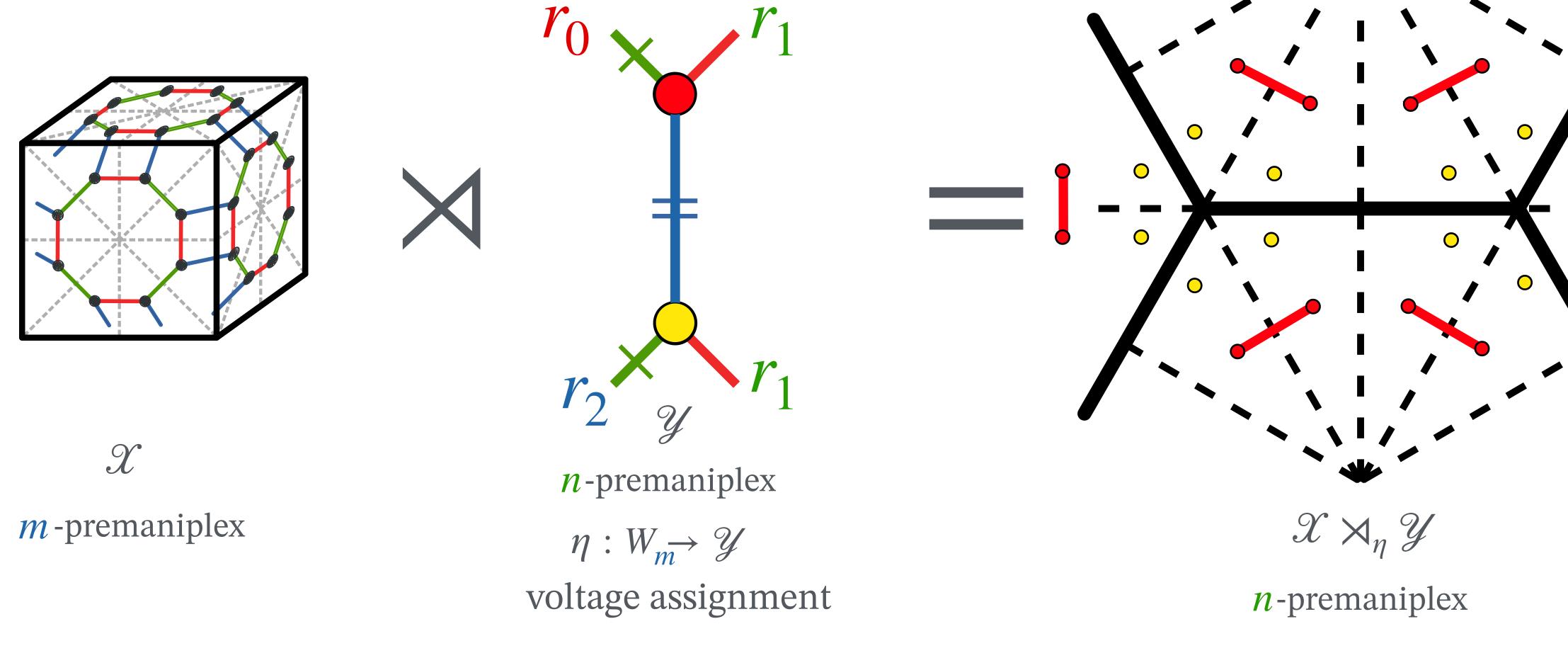


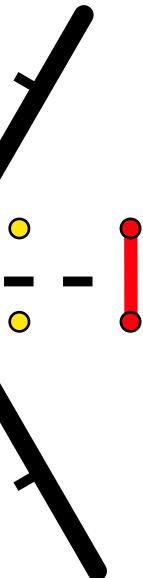


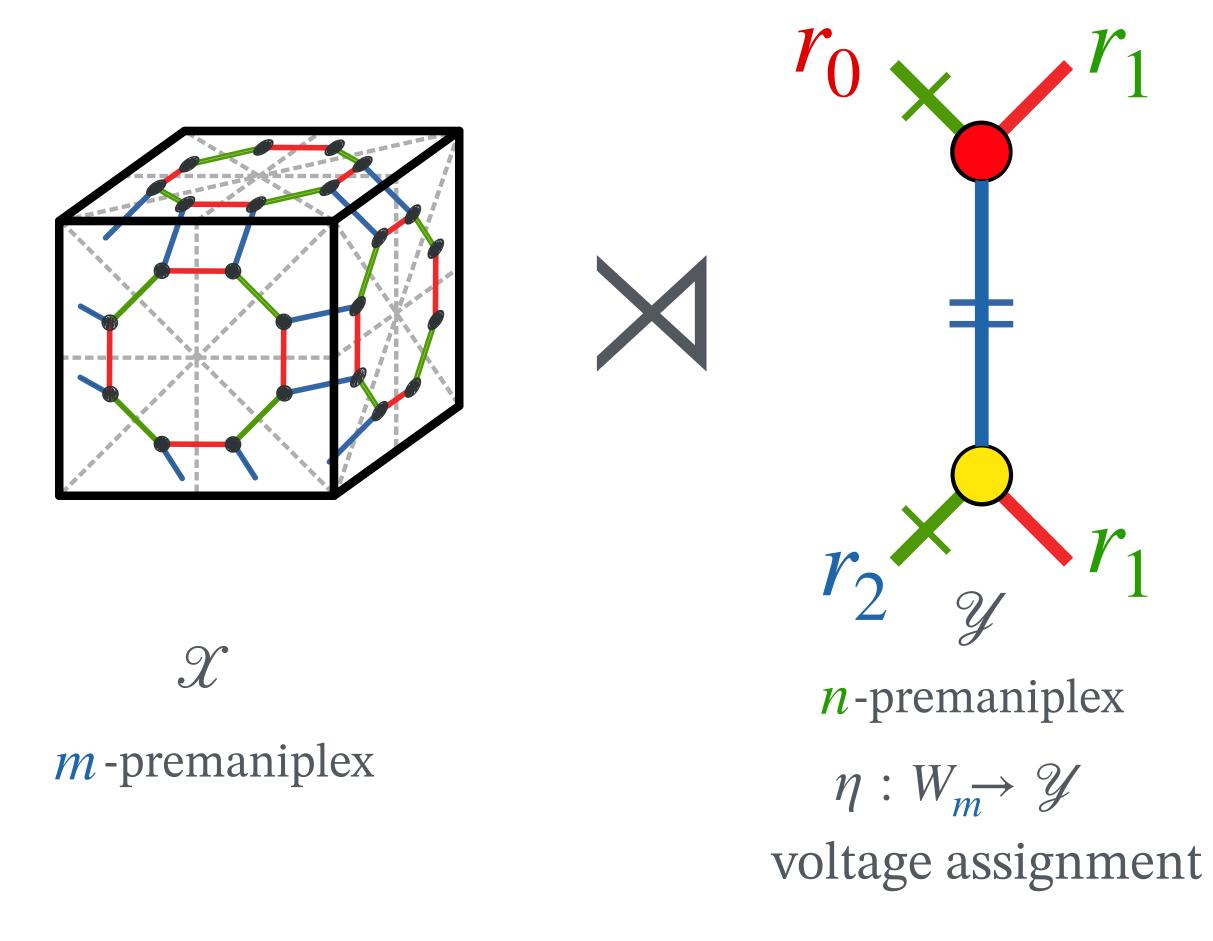


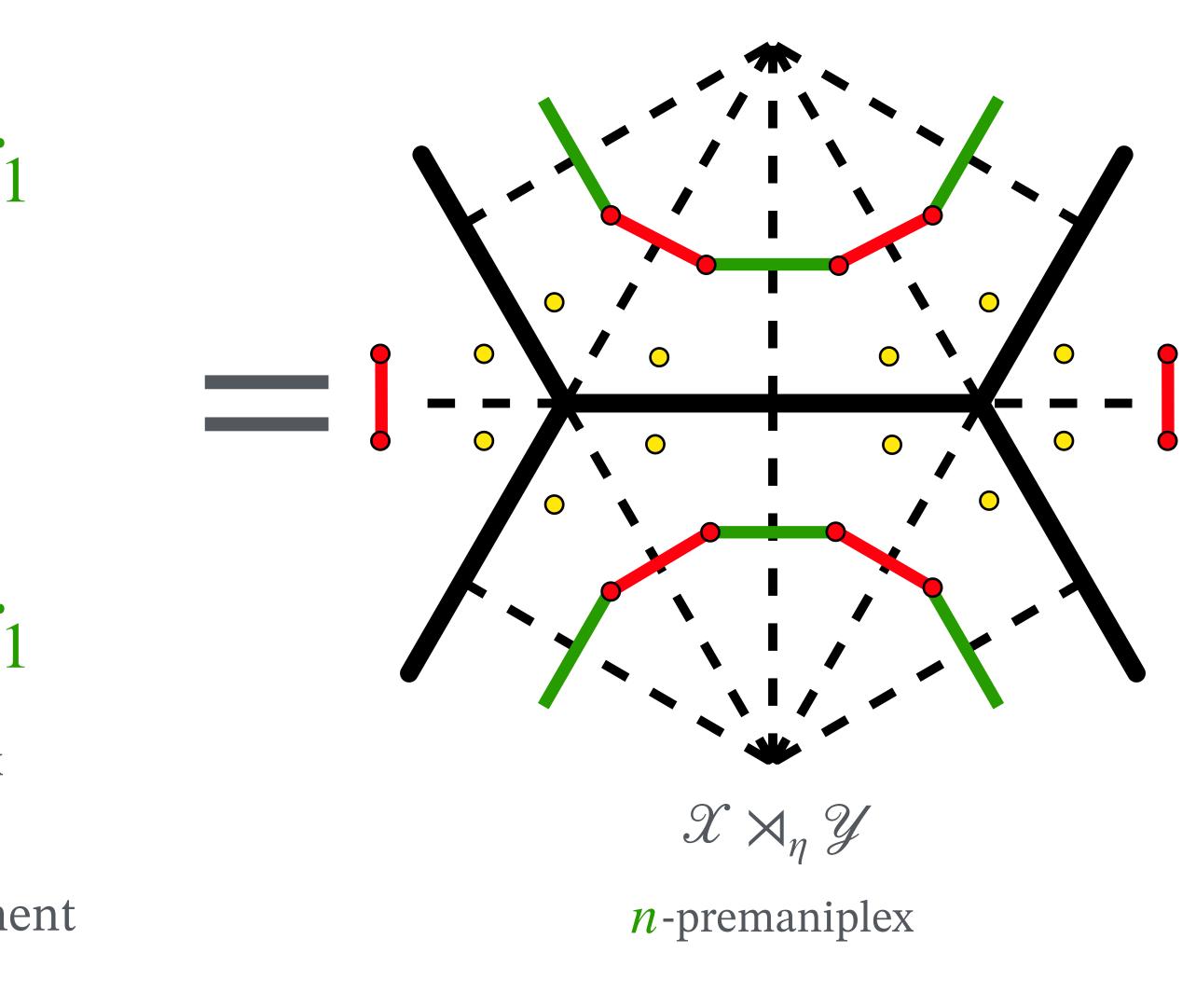




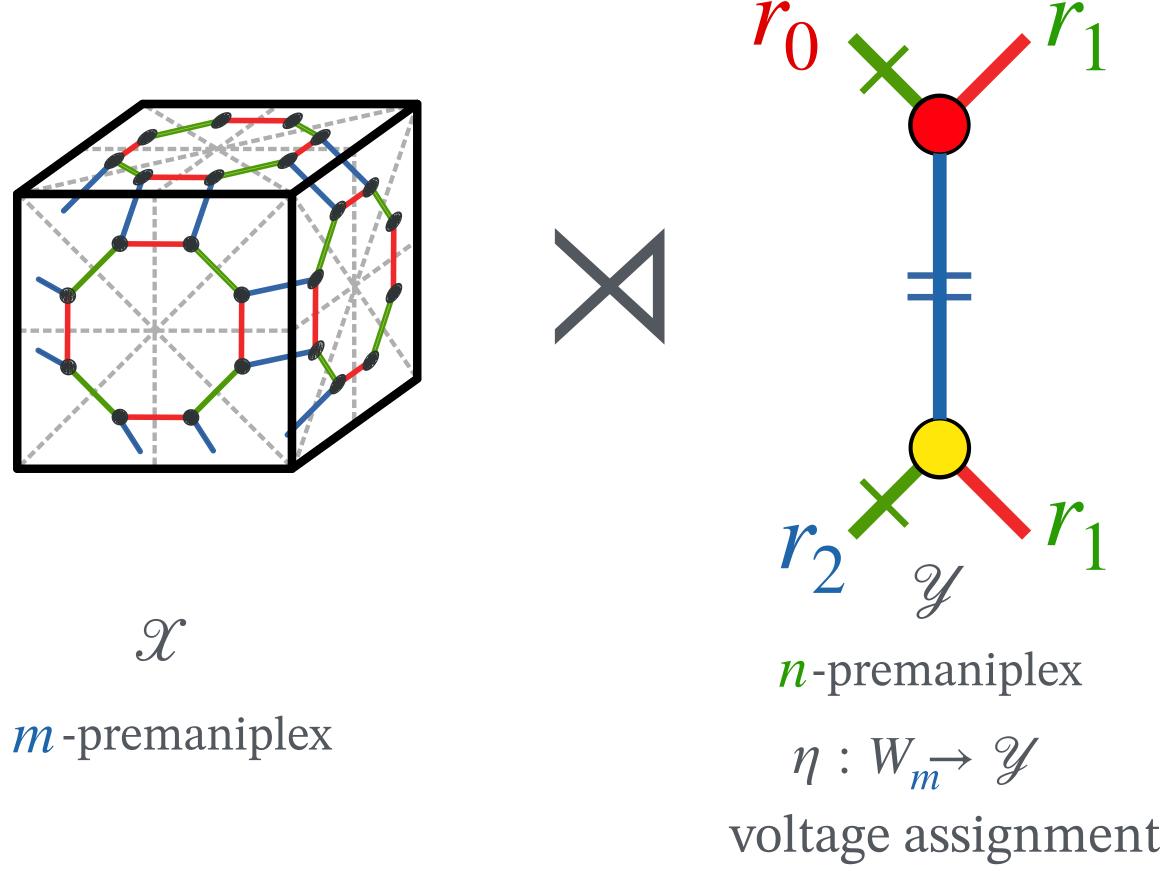


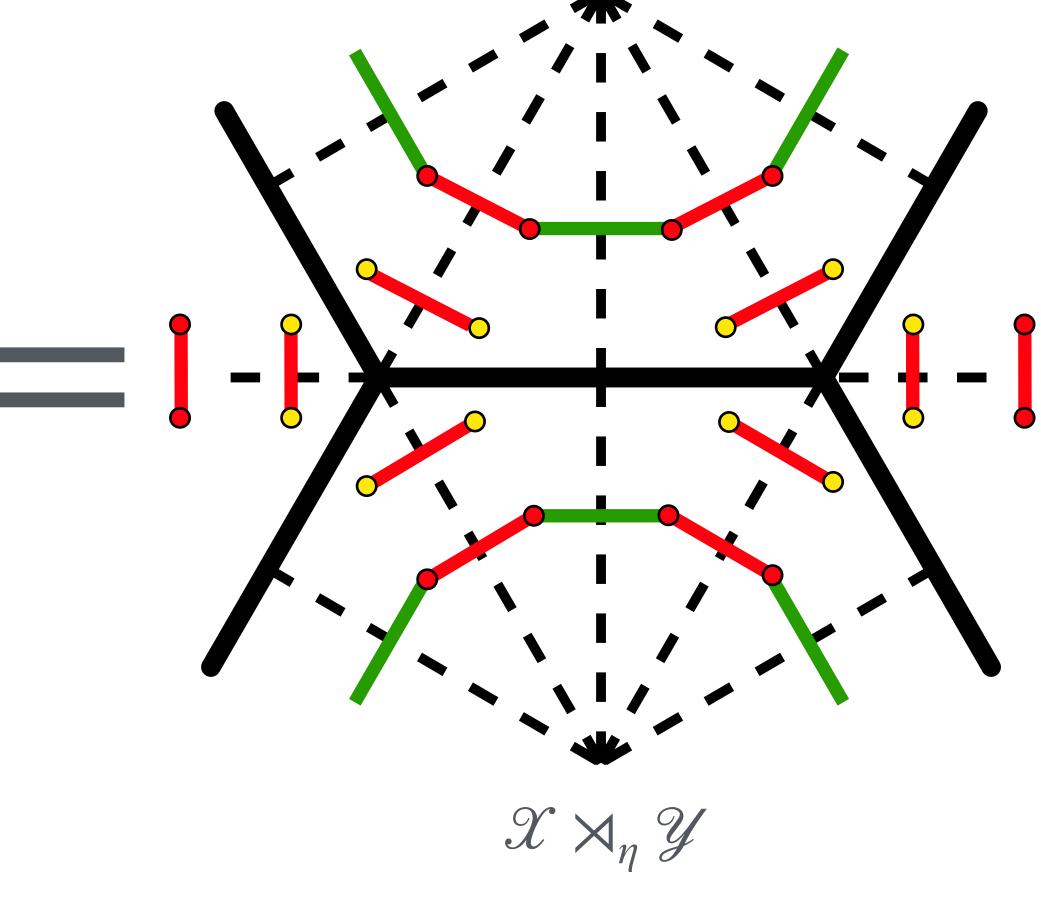




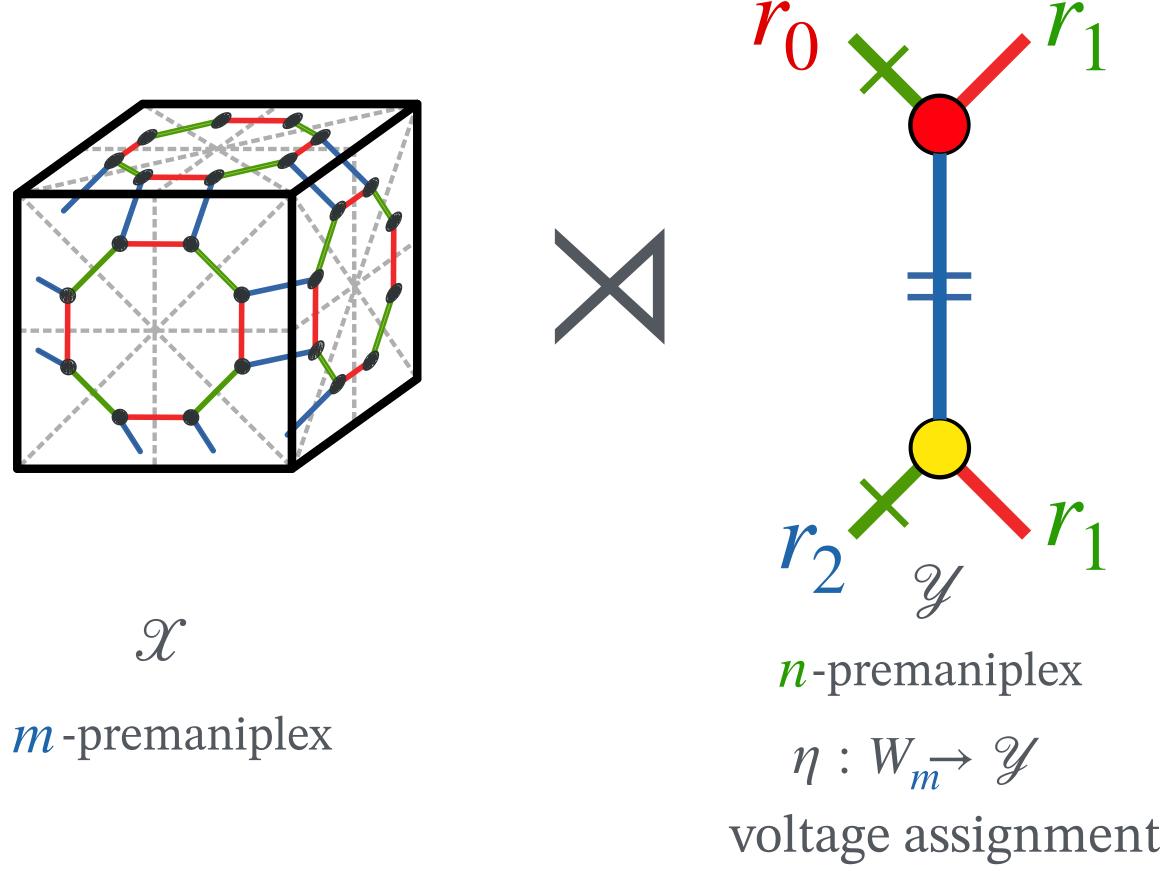


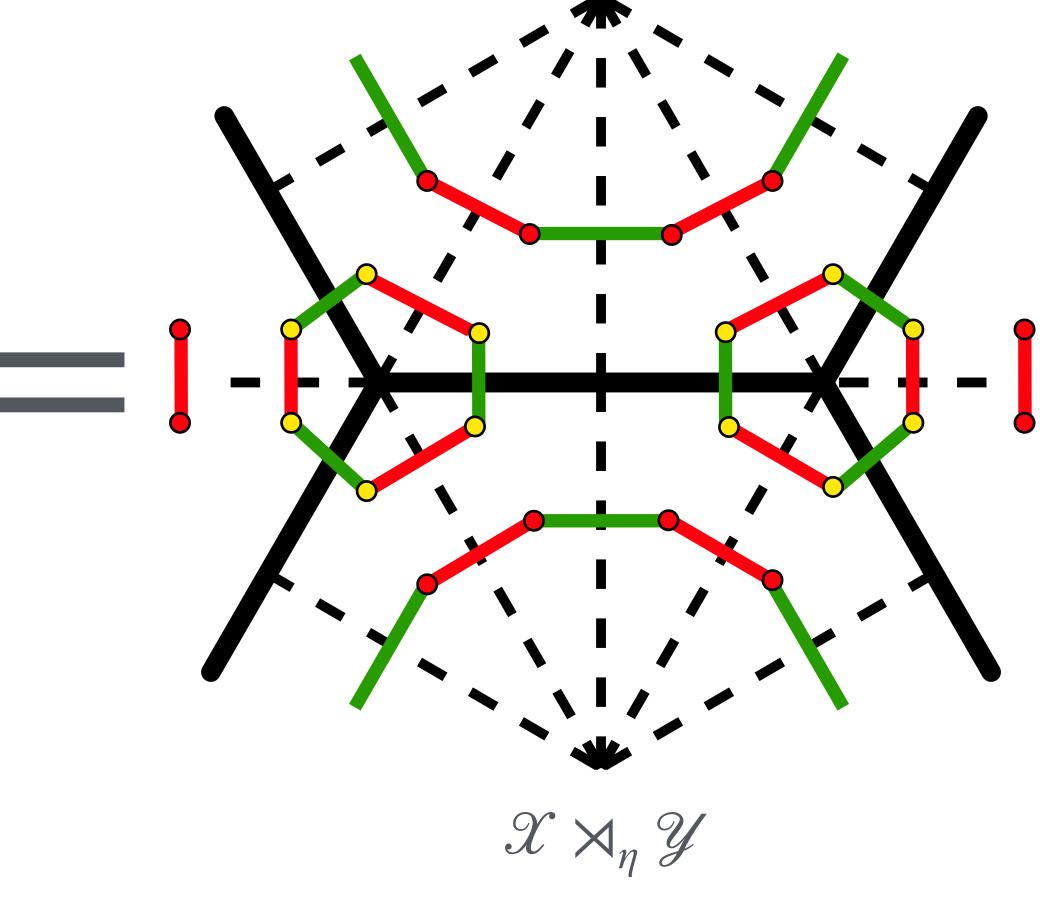
• An (*m*, *n*)- voltage operation:



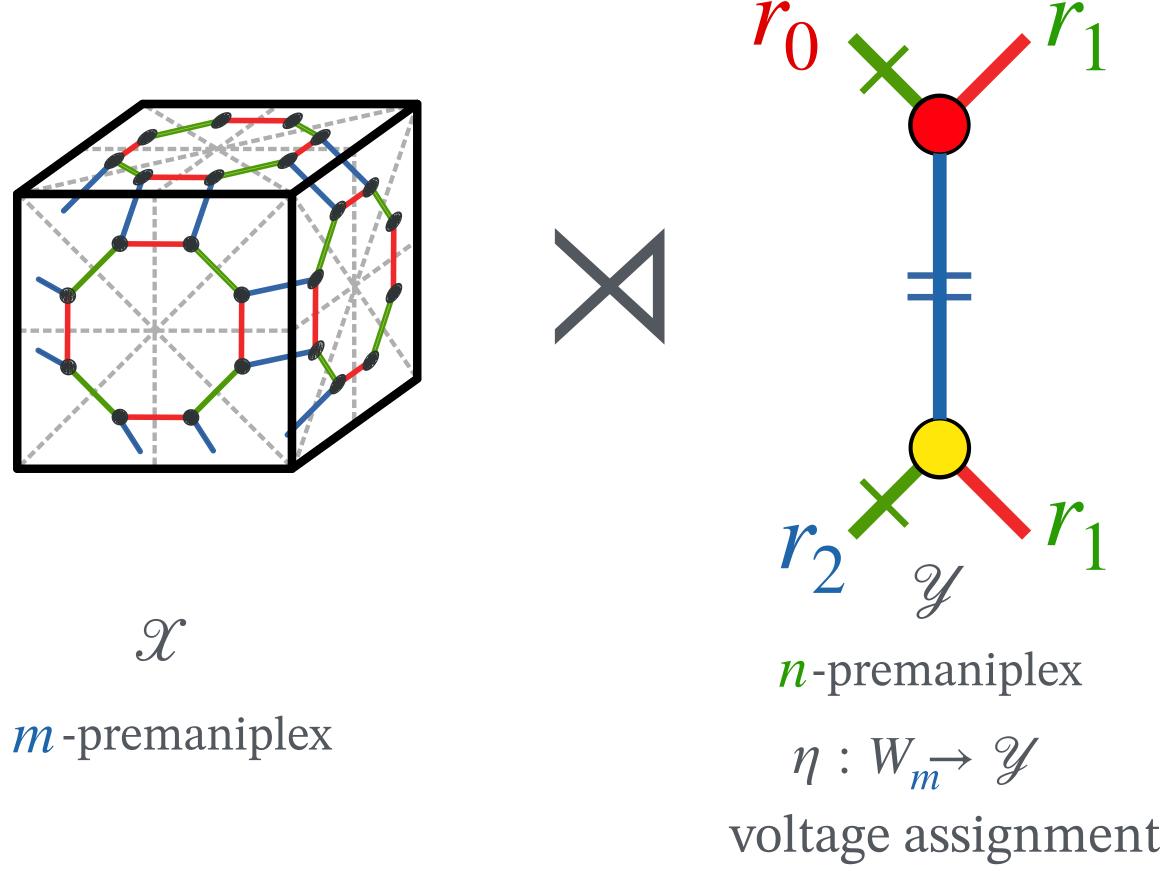


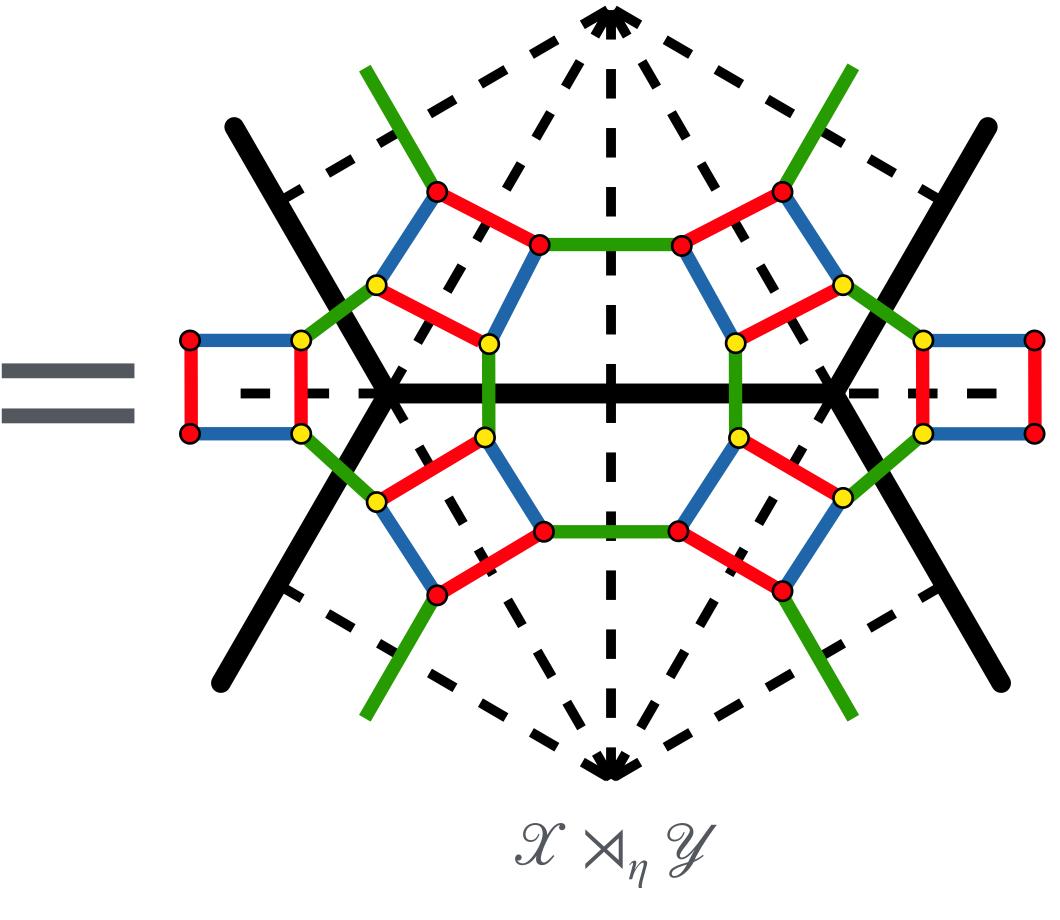
• An (*m*, *n*)- voltage operation:



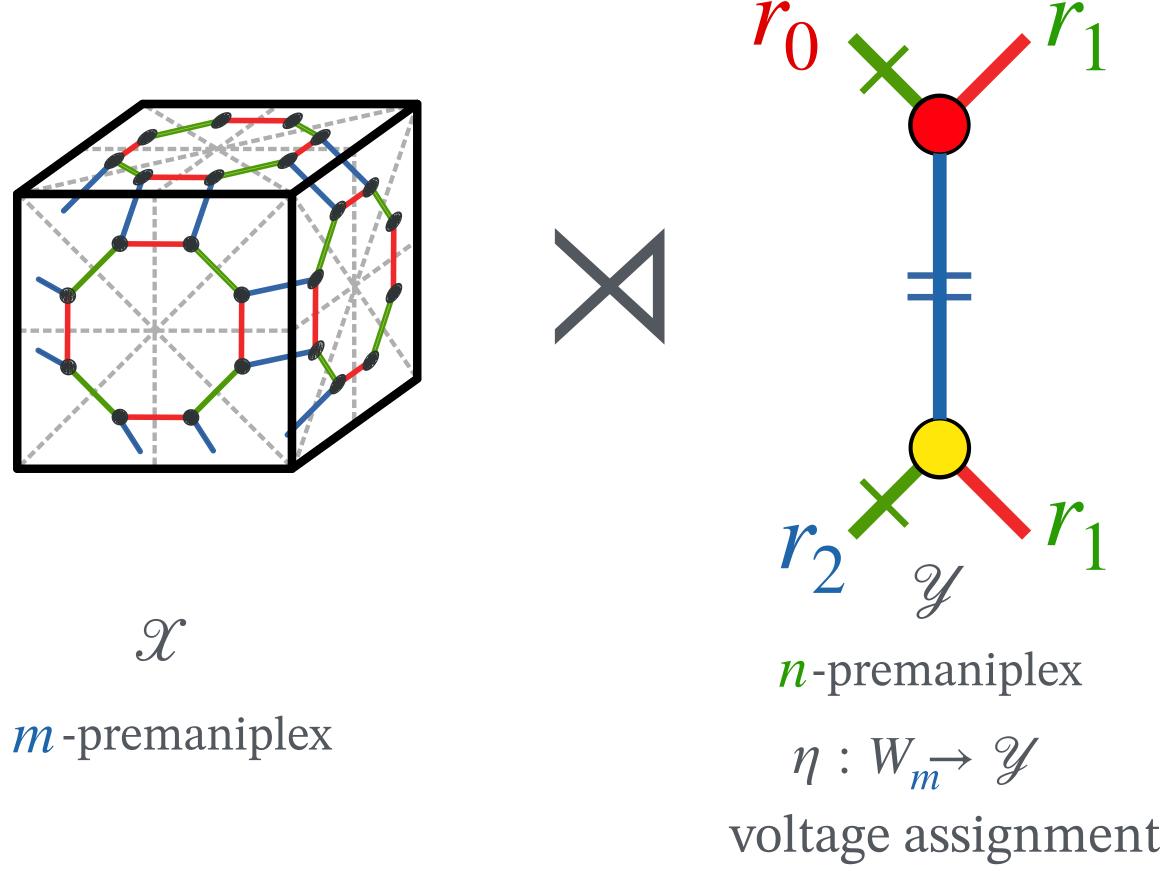


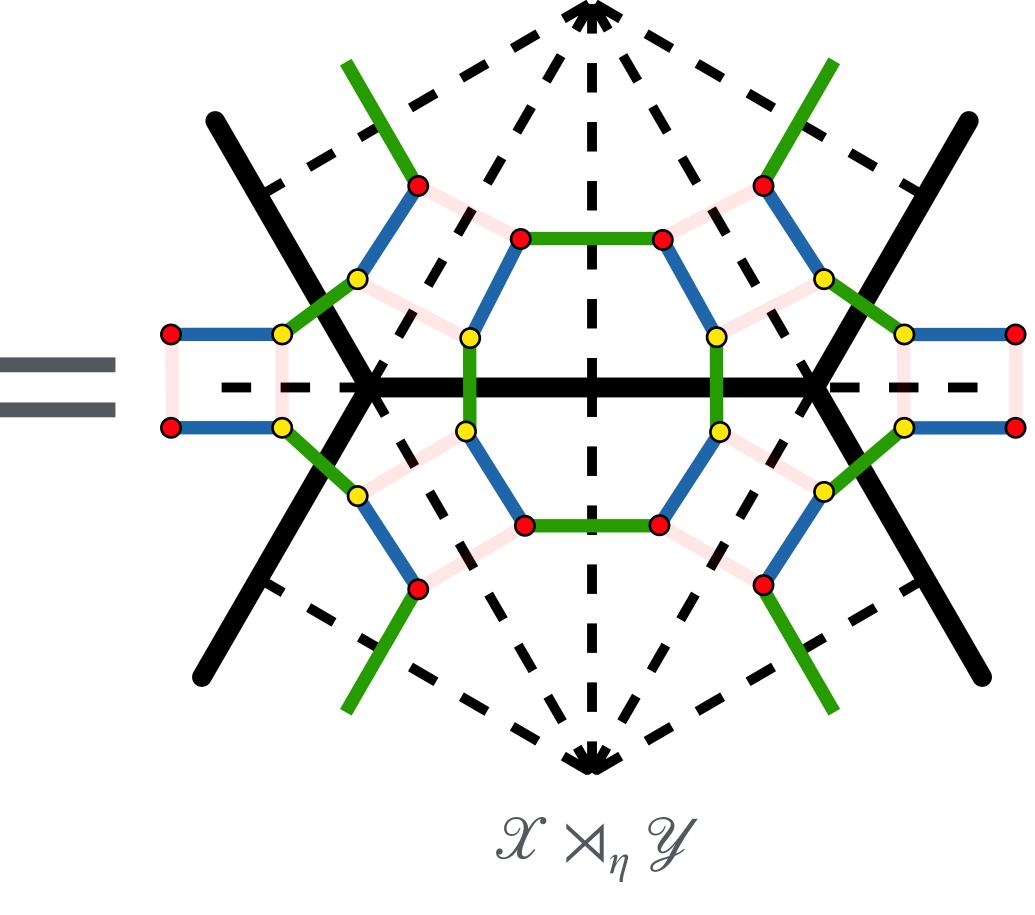
• An (*m*, *n*)- voltage operation:



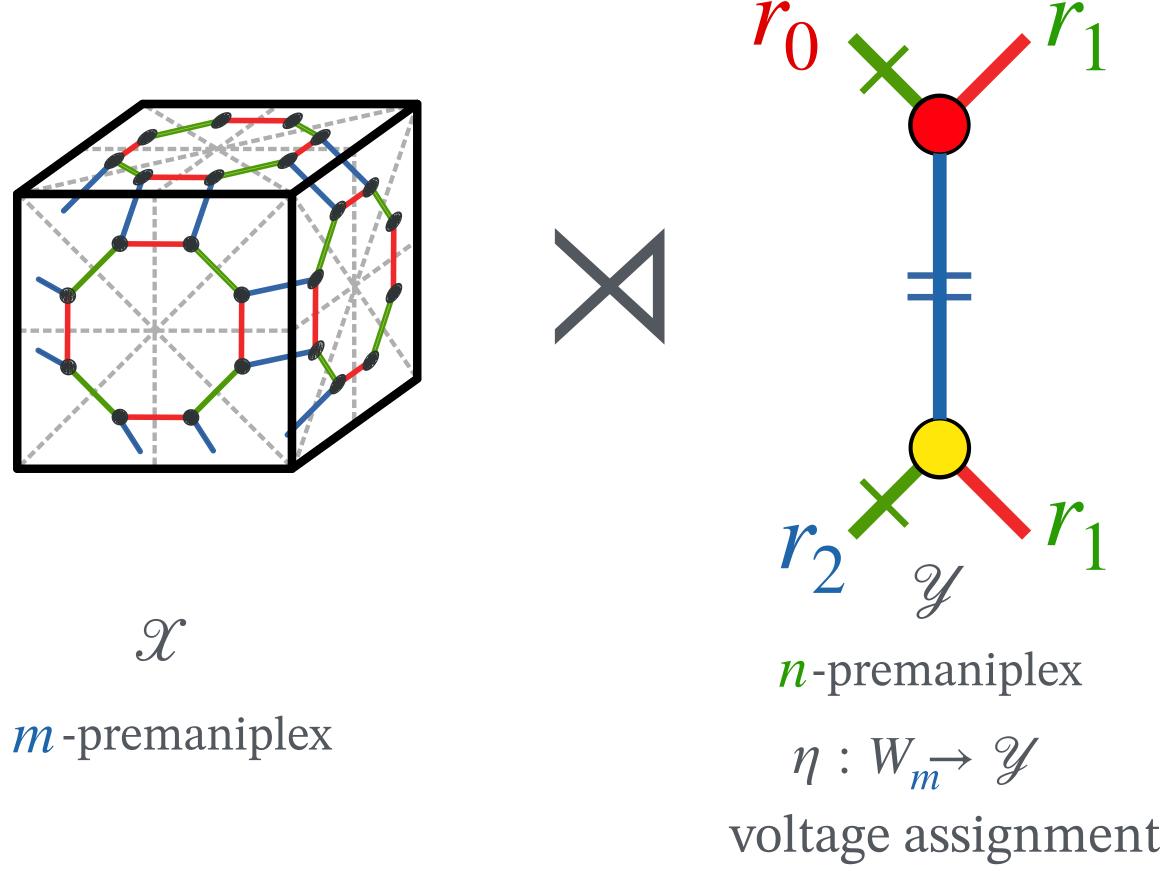


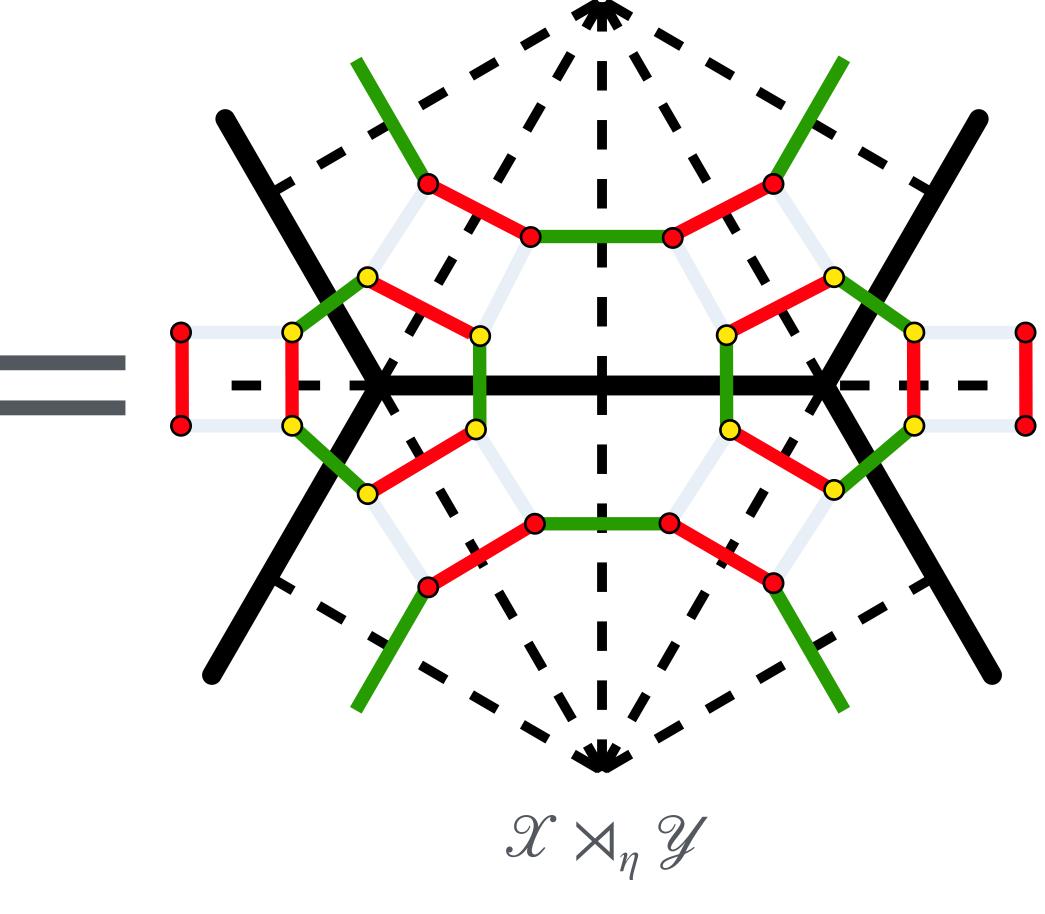
• An (*m*, *n*)- voltage operation:



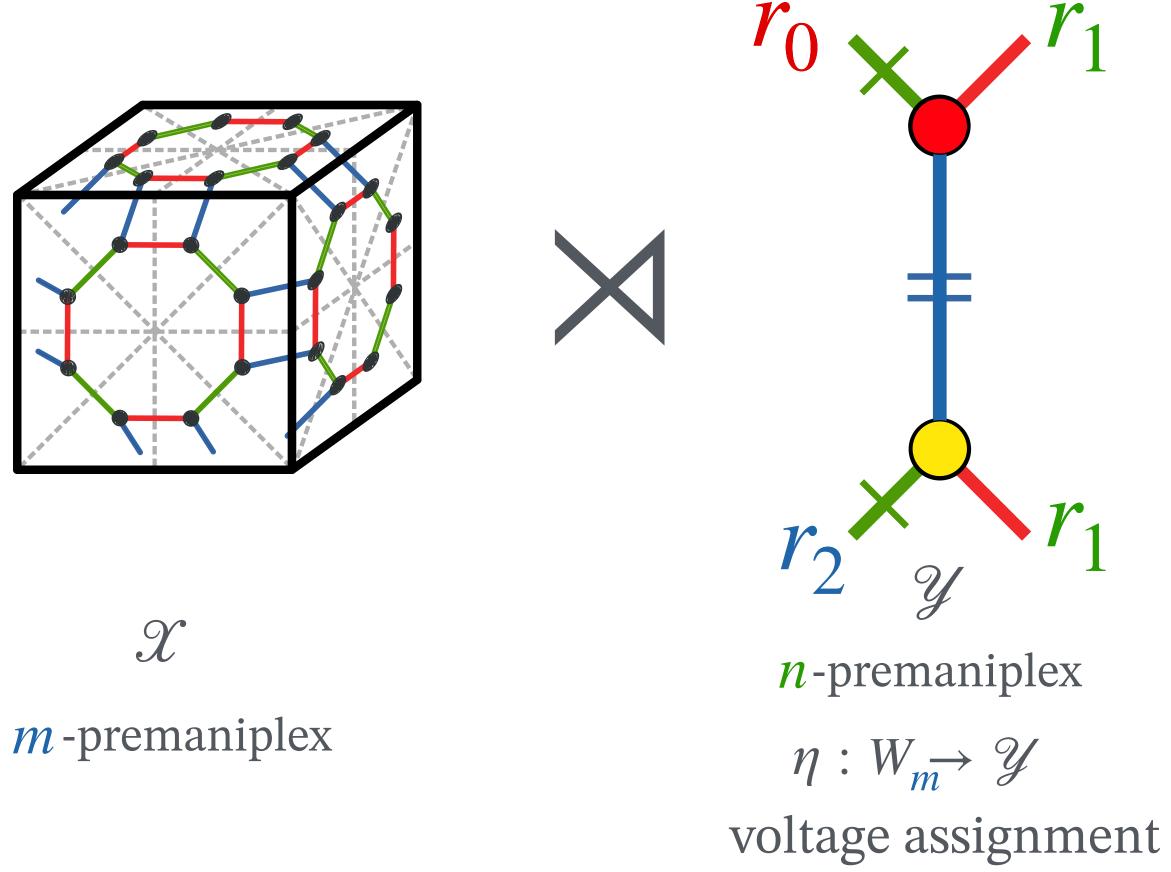


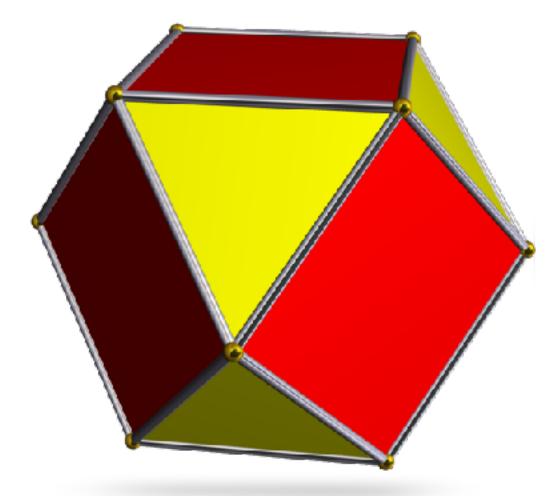
• An (*m*, *n*)- voltage operation:



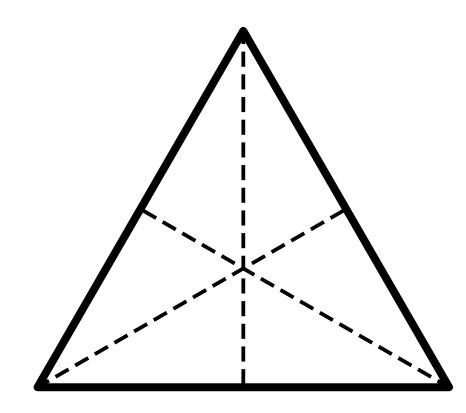


• An (*m*, *n*)- voltage operation:

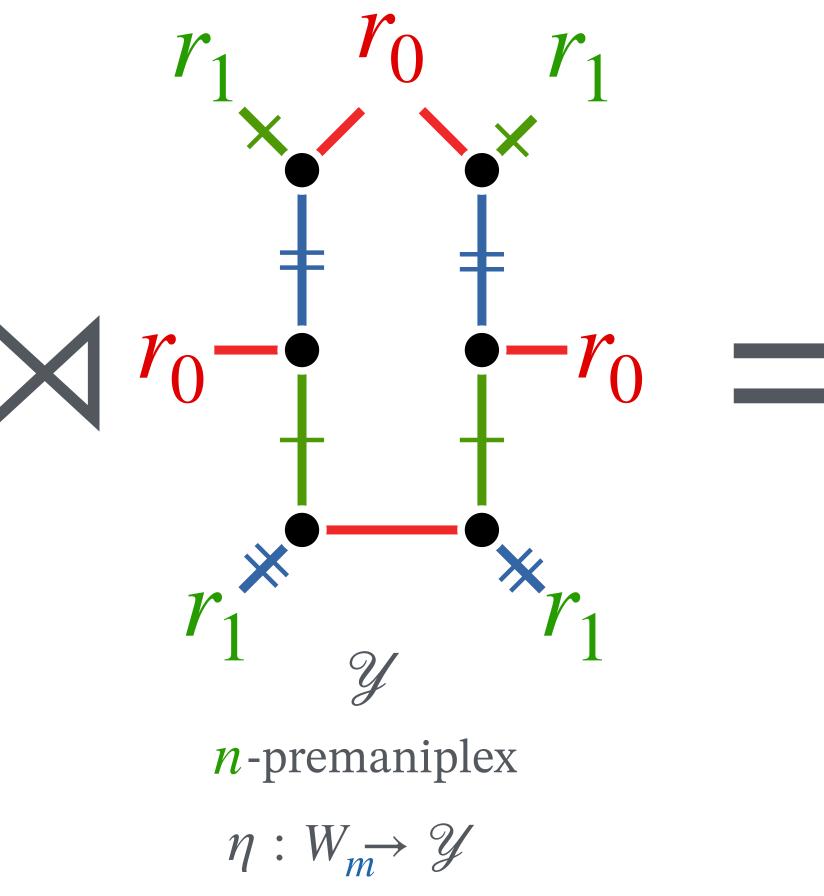




• An (*m*, *n*)- voltage operation:



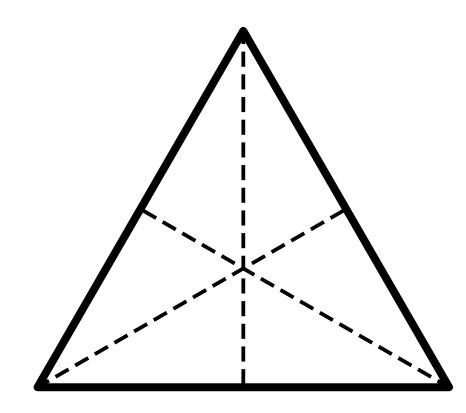
m-premaniplex



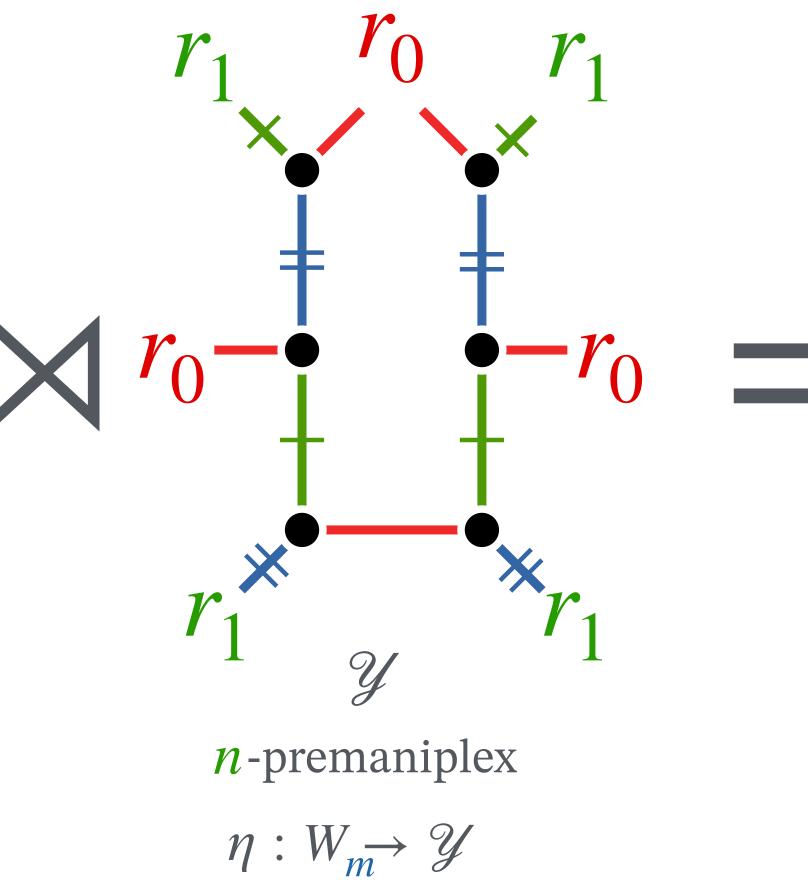
voltage assignment

 $\mathcal{X} \rtimes_{\eta} \mathcal{Y}$

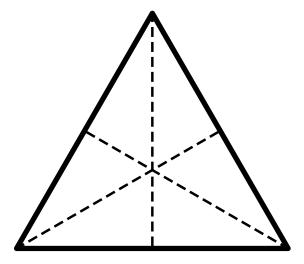
• An (*m*, *n*)- voltage operation:



m-premaniplex

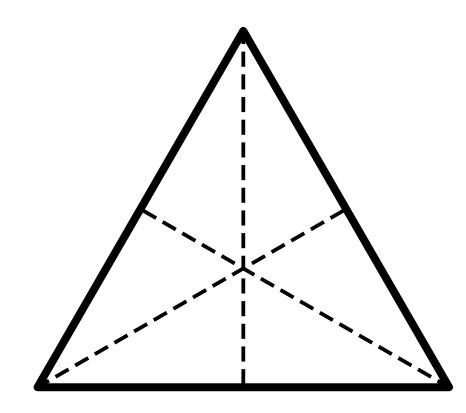


voltage assignment

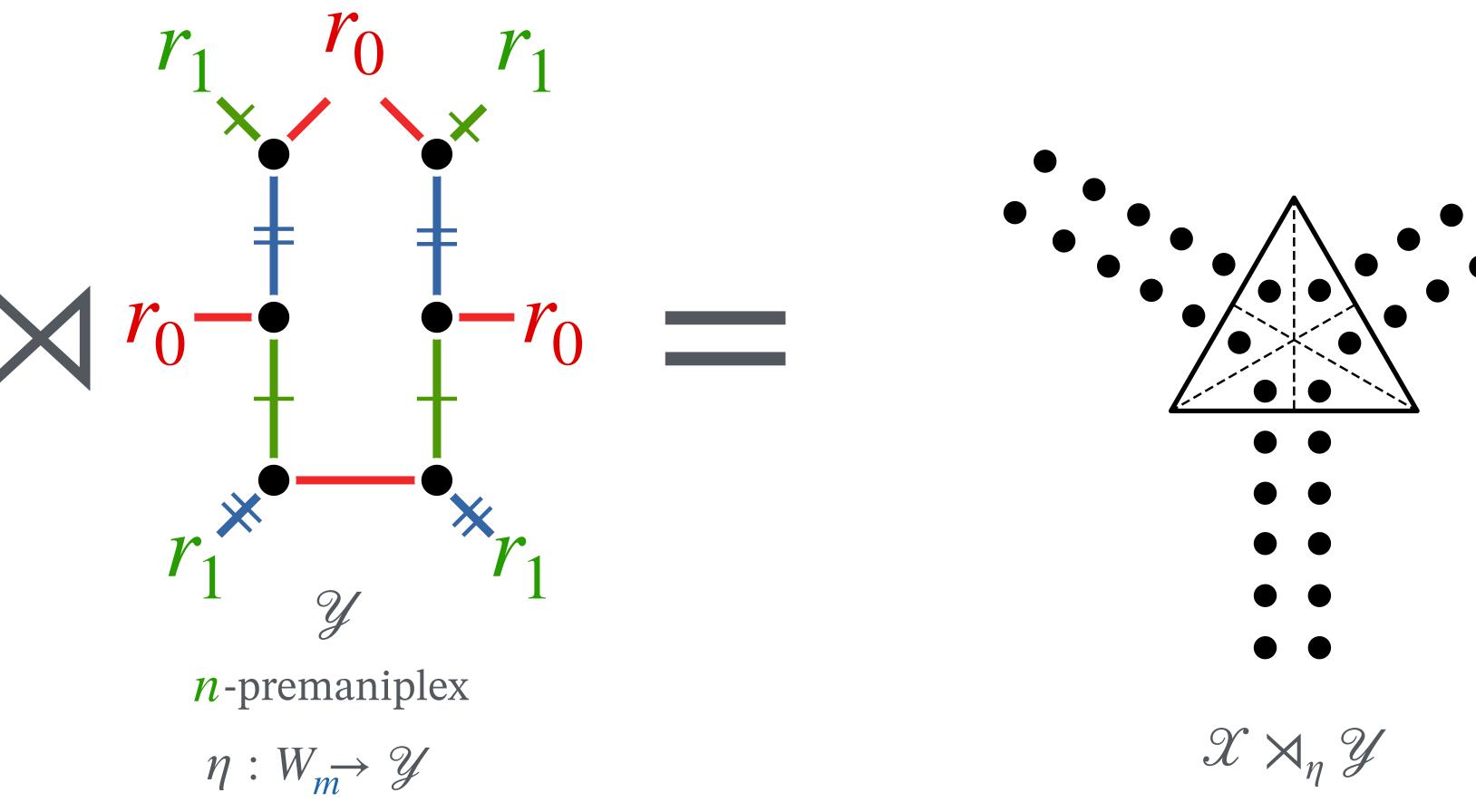


 $\mathscr{X} \Join_{\eta} \mathscr{Y}$

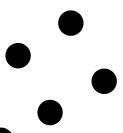
• An (*m*, *n*)- voltage operation:



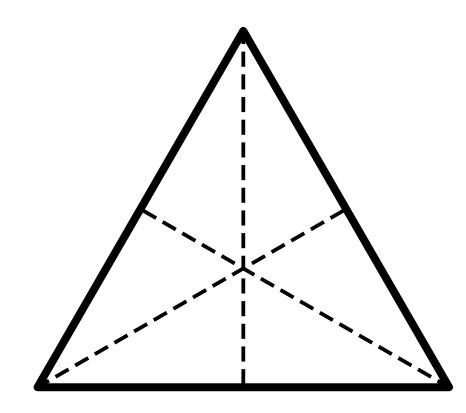
m-premaniplex



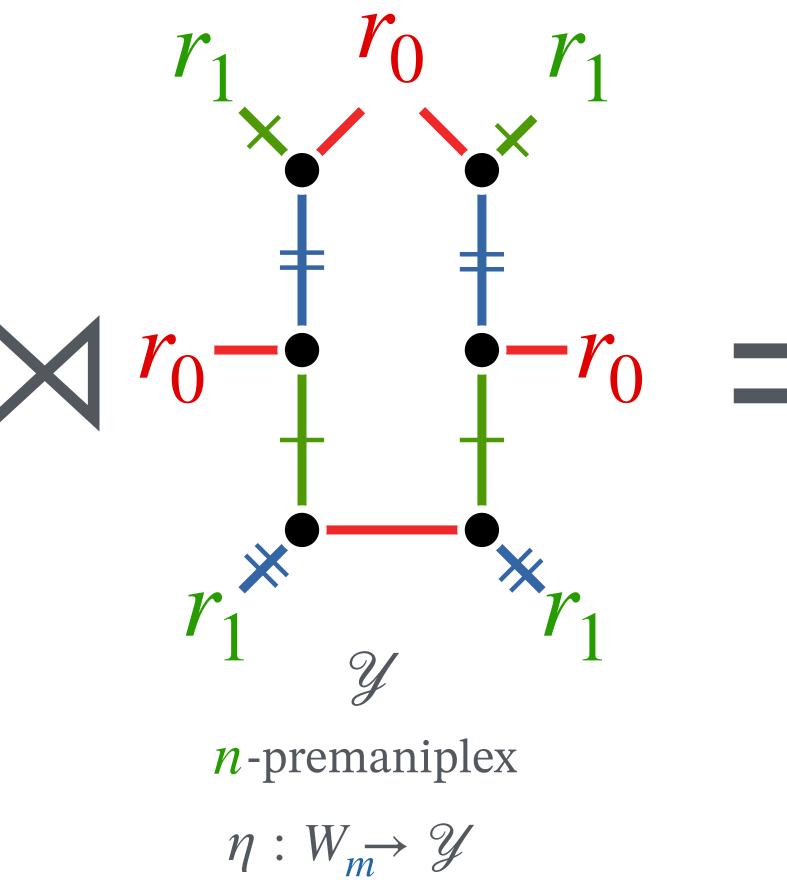
voltage assignment



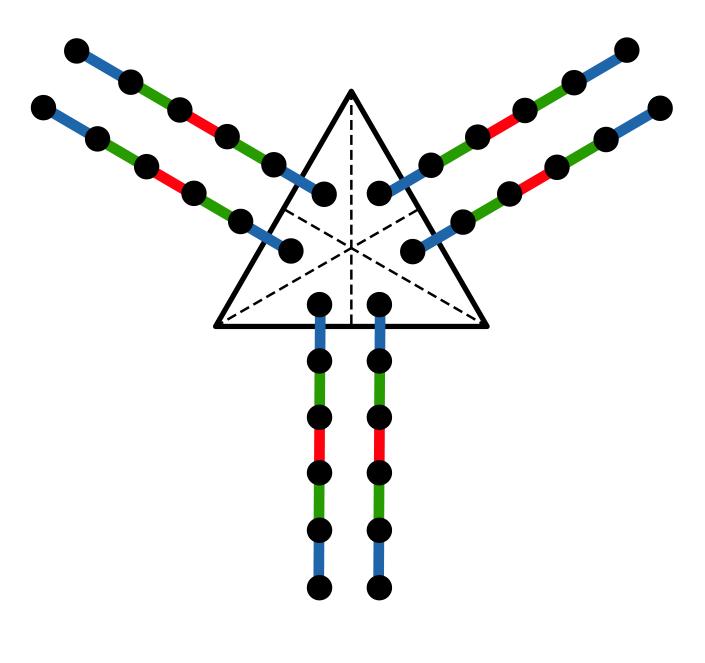
• An (*m*, *n*)- voltage operation:



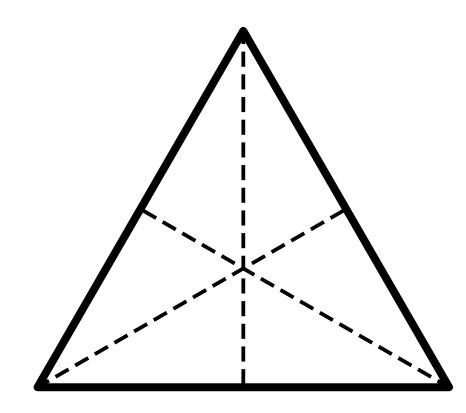
m-premaniplex



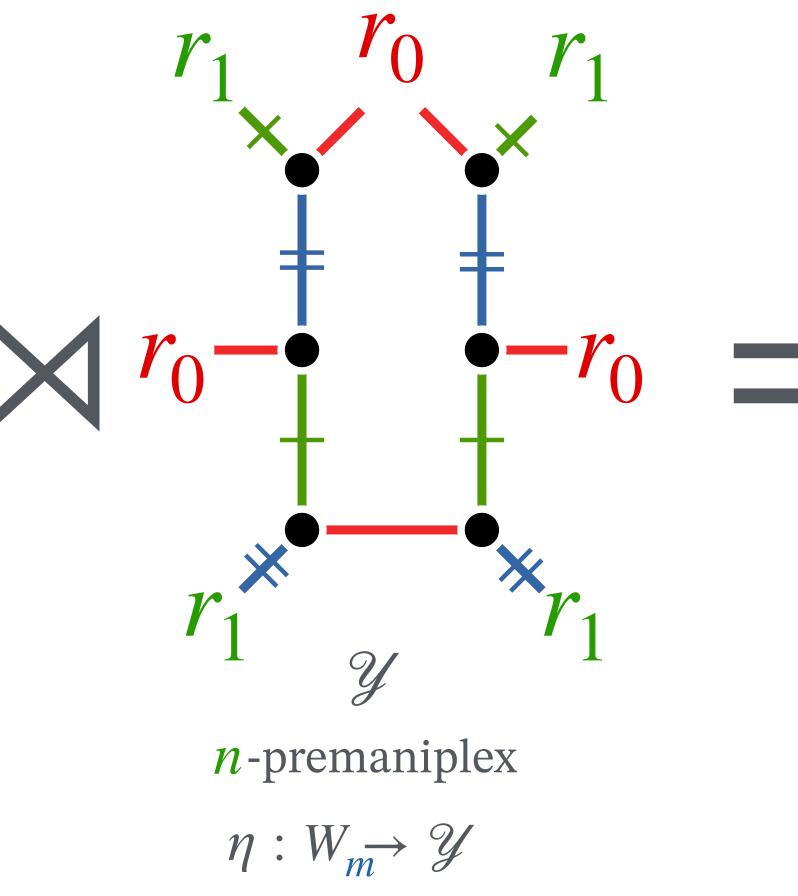
voltage assignment



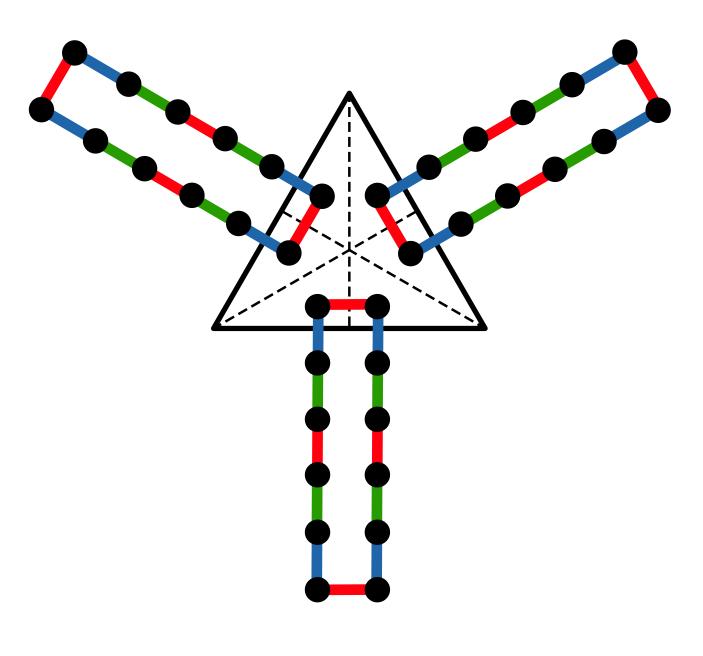
• An (*m*, *n*)- voltage operation:



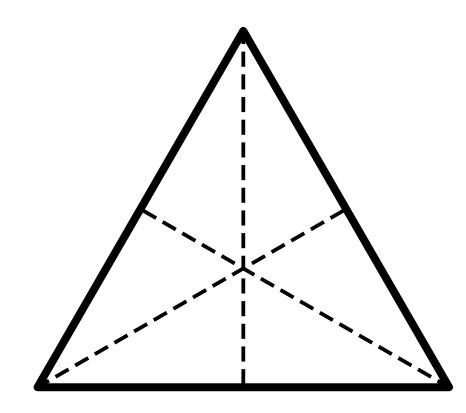
m-premaniplex



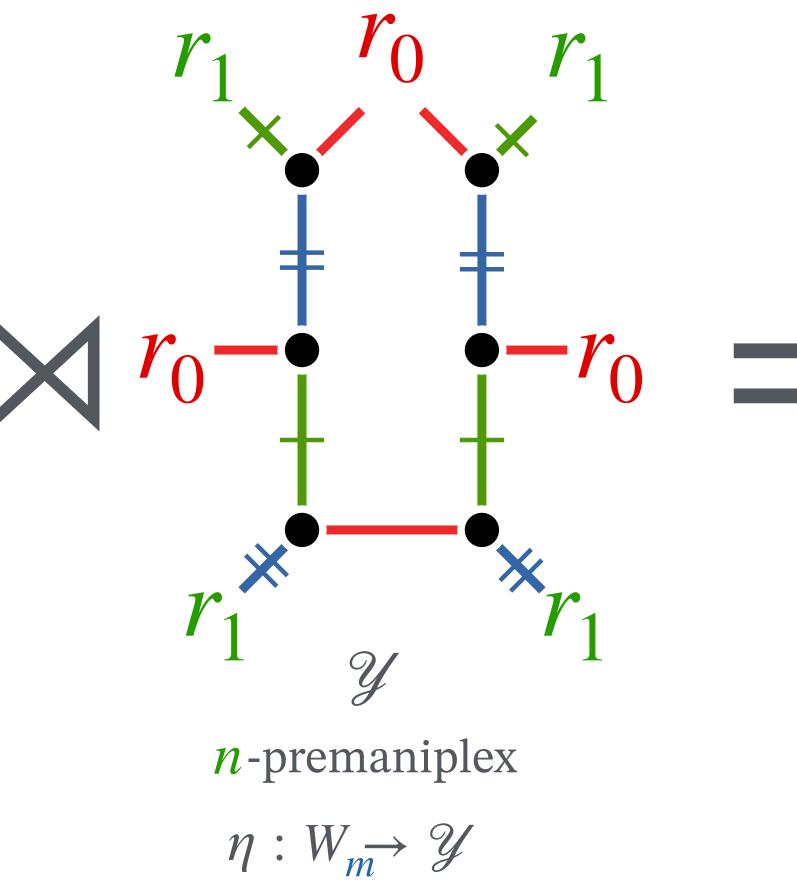
voltage assignment



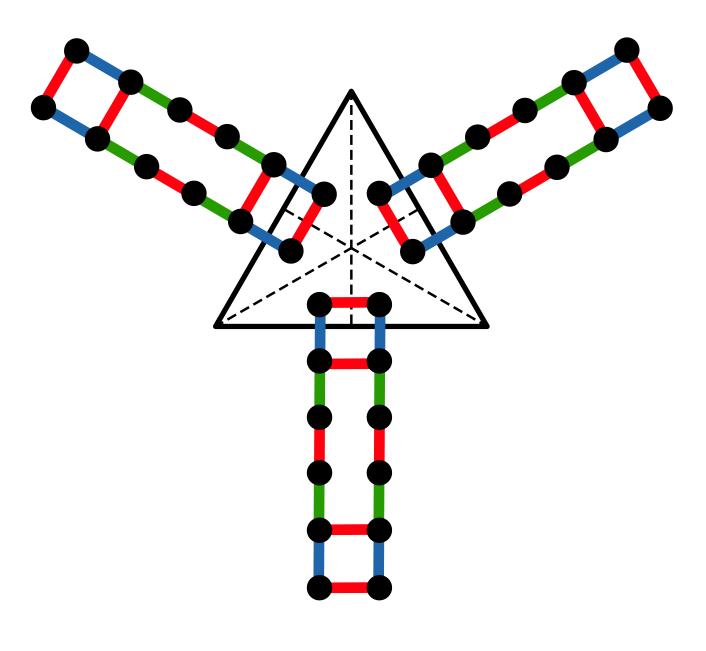
• An (*m*, *n*)- voltage operation:



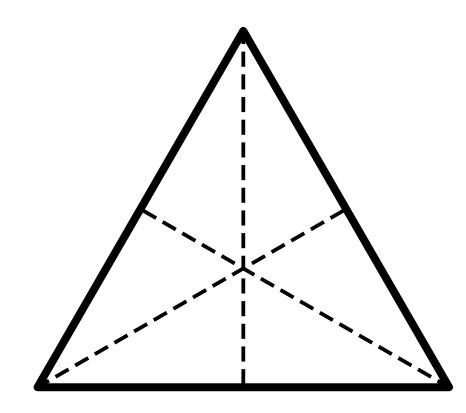
m-premaniplex



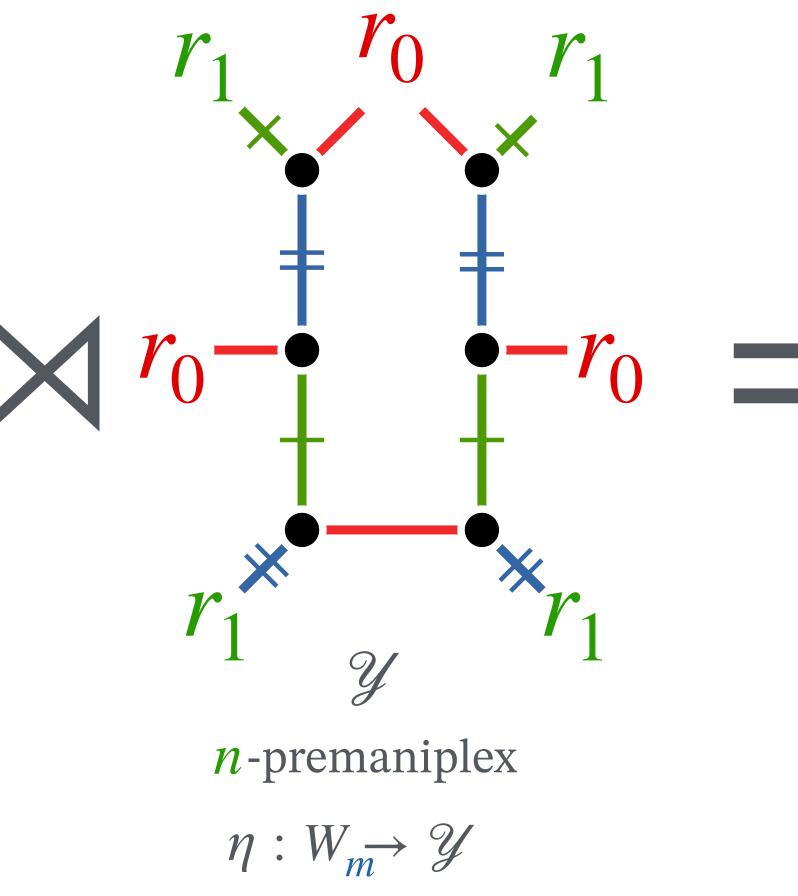
voltage assignment



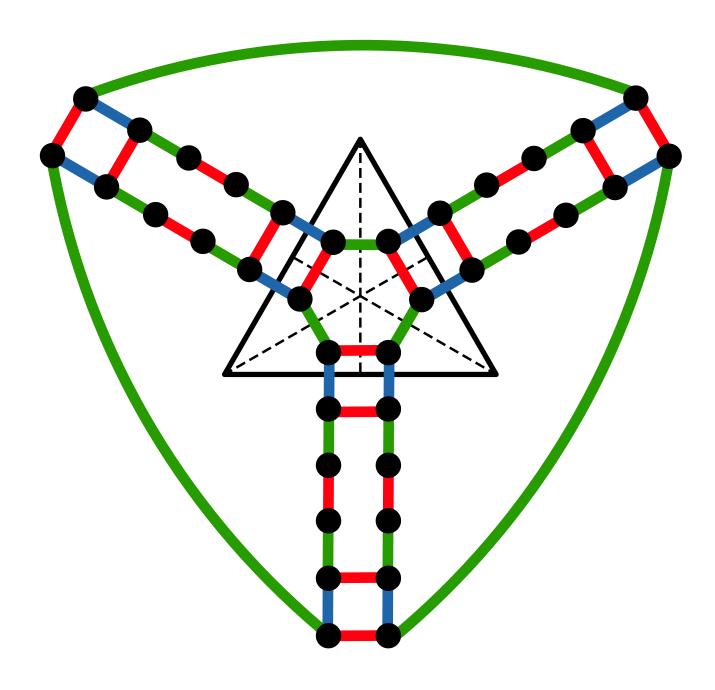
• An (*m*, *n*)- voltage operation:



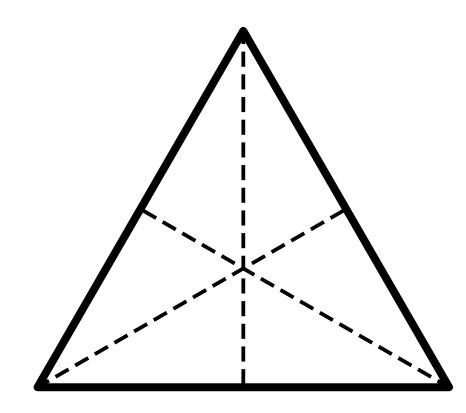
m-premaniplex



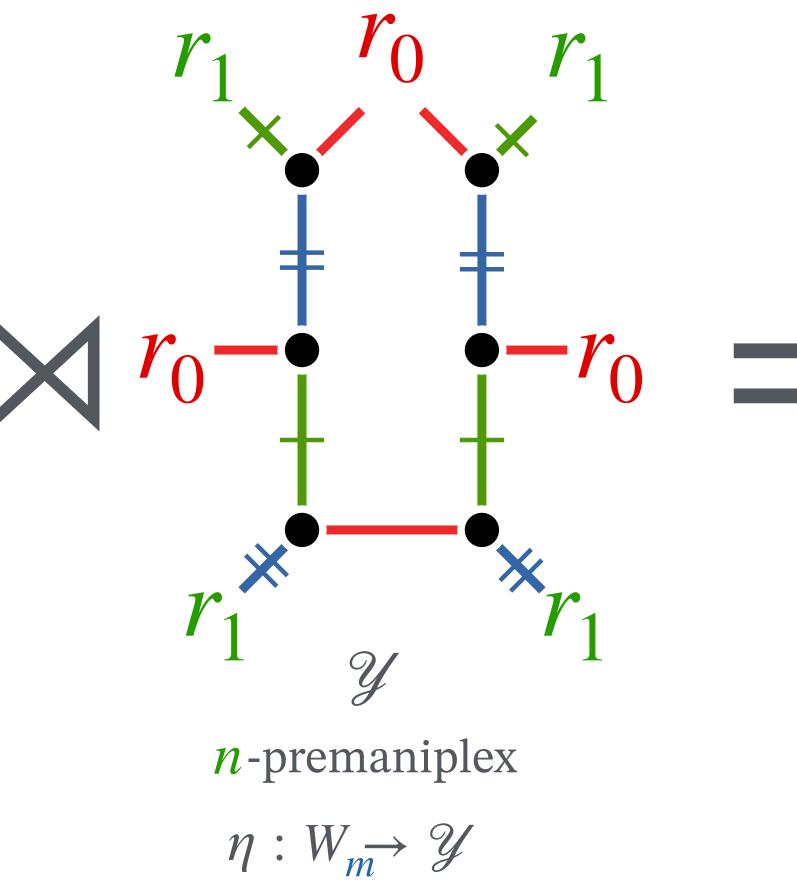
voltage assignment



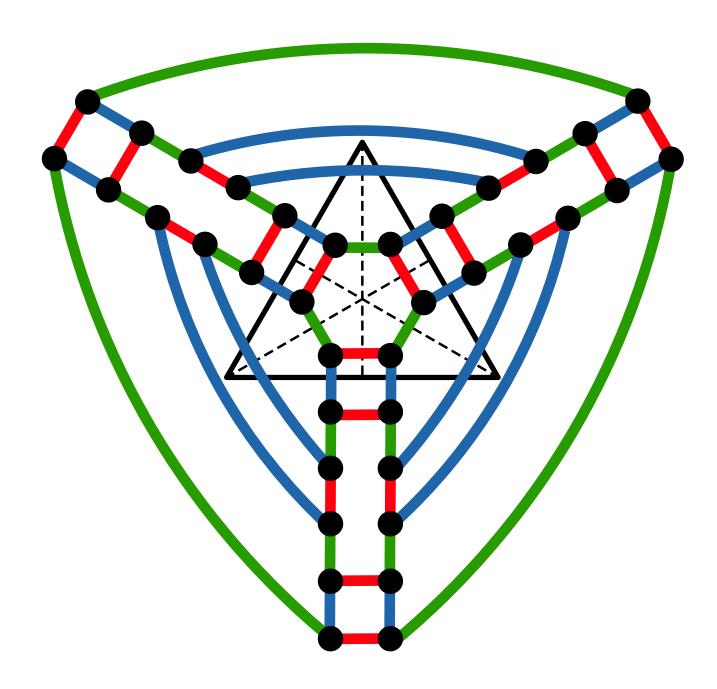
• An (*m*, *n*)- voltage operation:



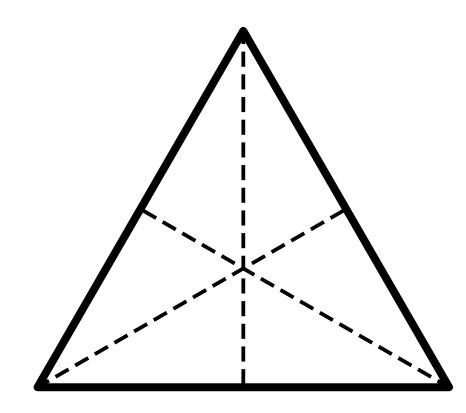
m-premaniplex



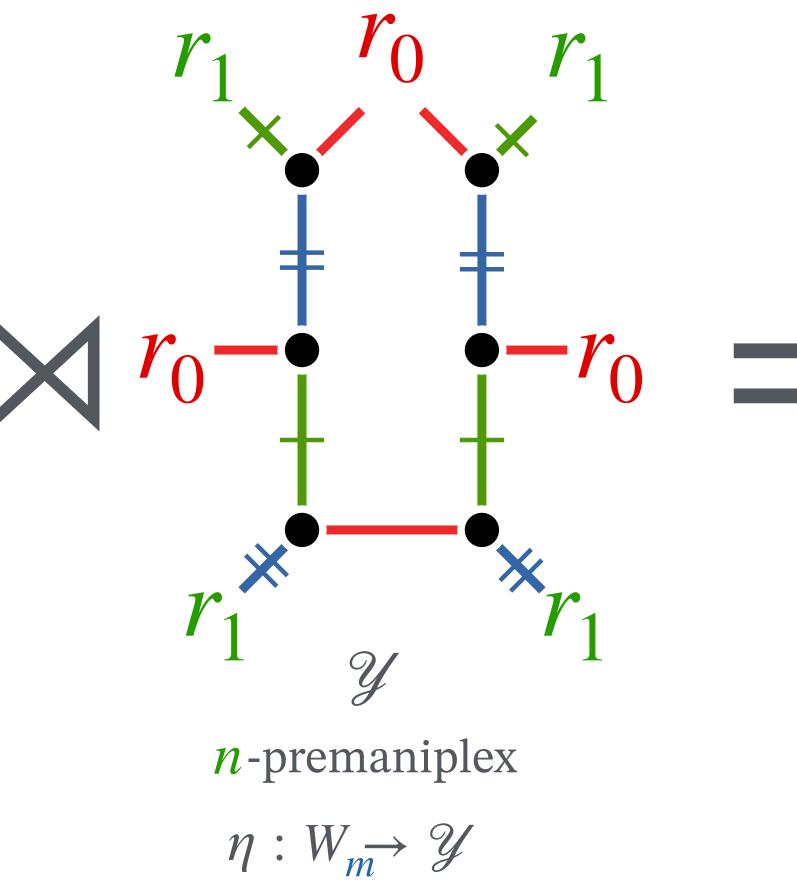
voltage assignment



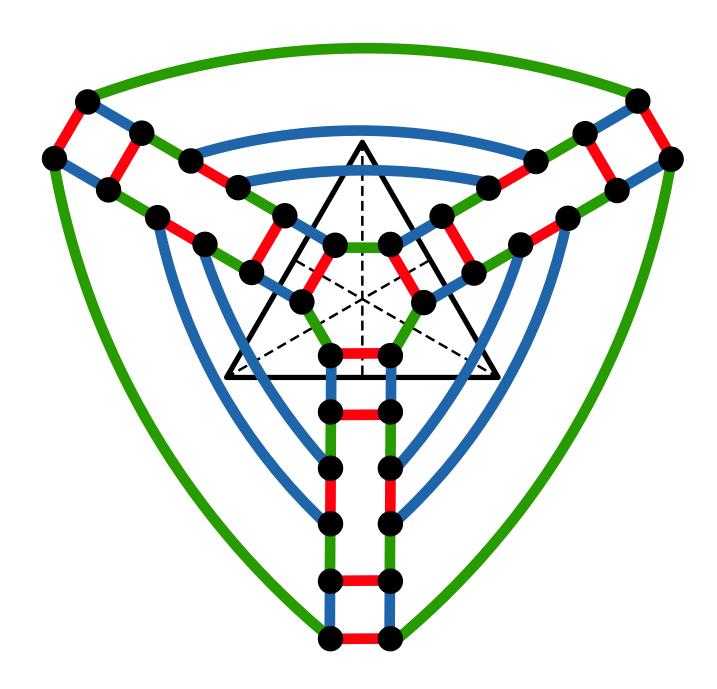
• An (*m*, *n*)- voltage operation:



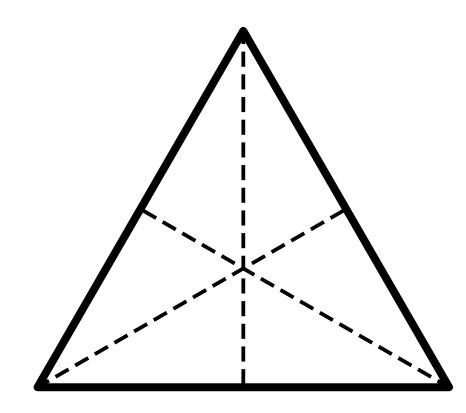
m-premaniplex



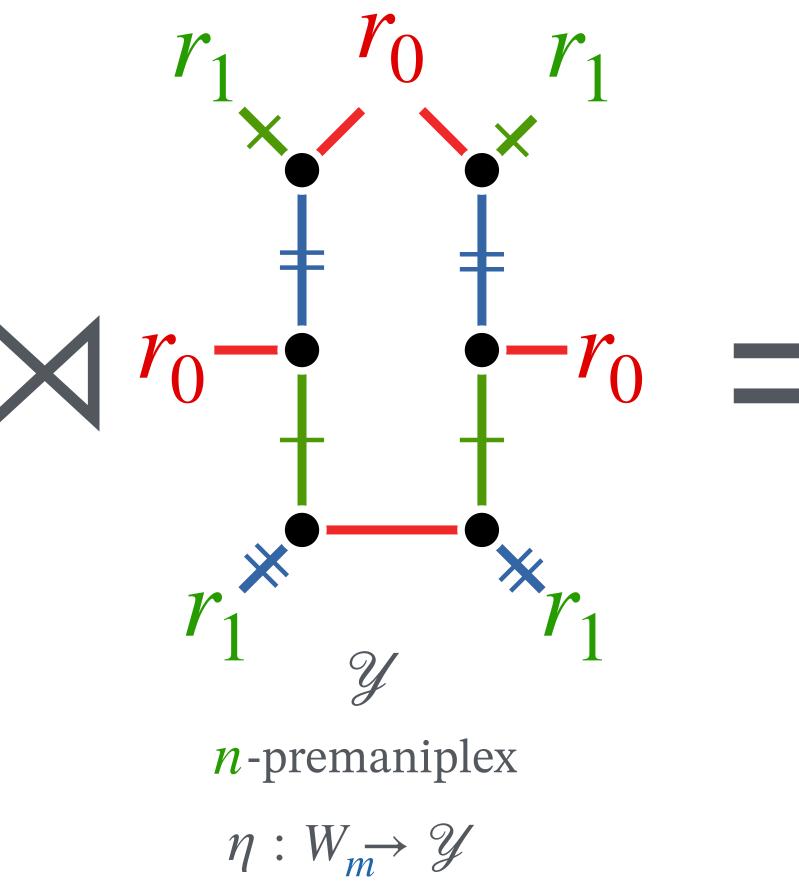
voltage assignment



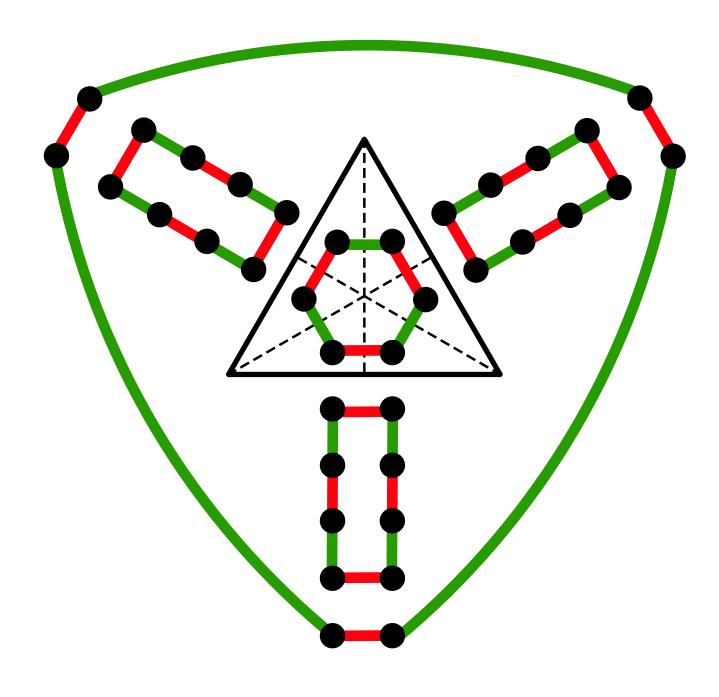
• An (*m*, *n*)- voltage operation:



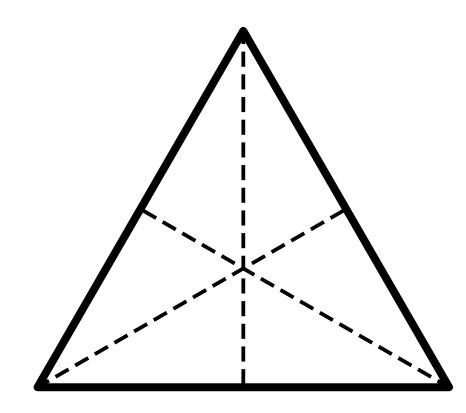
m-premaniplex



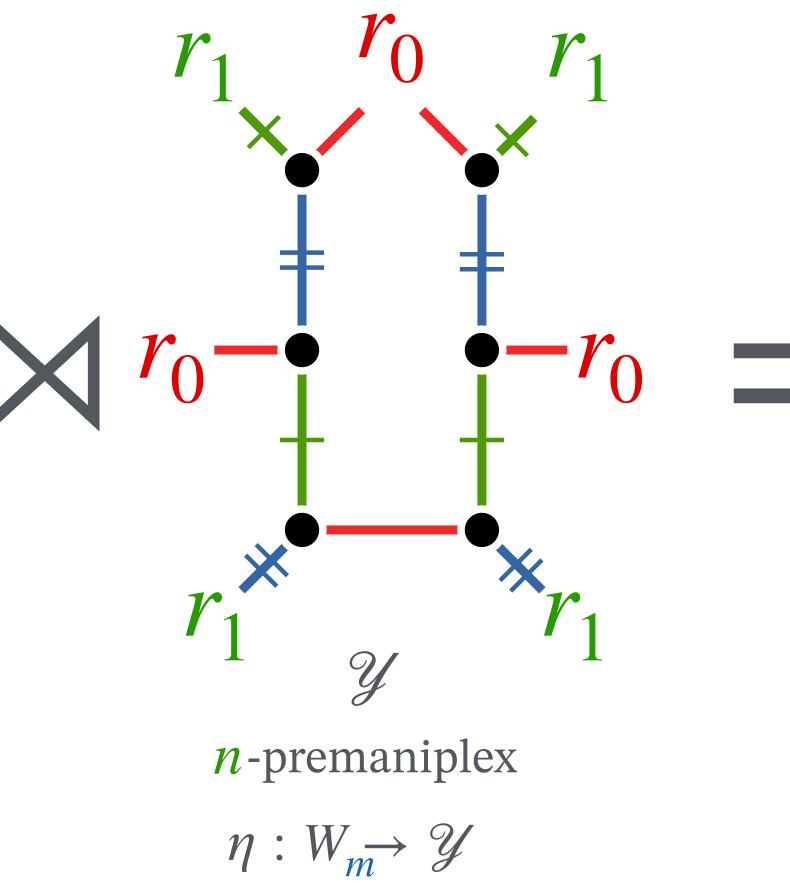
voltage assignment



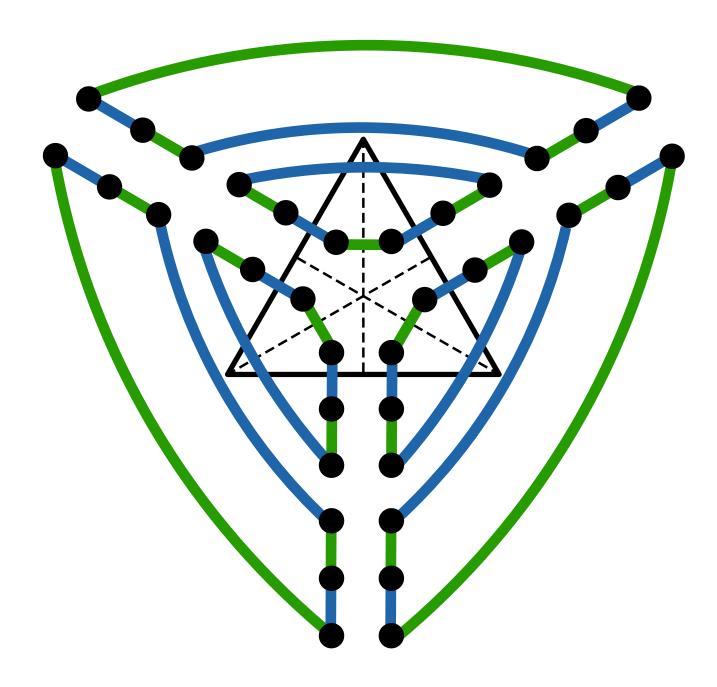
• An (*m*, *n*)- voltage operation:



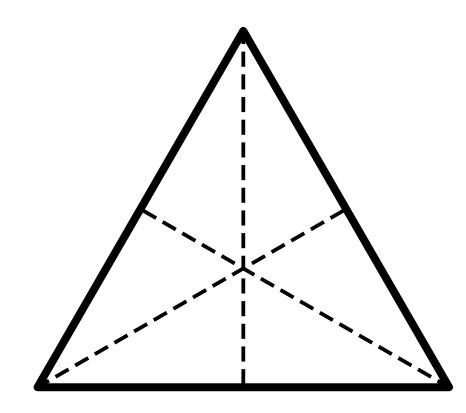
m-premaniplex



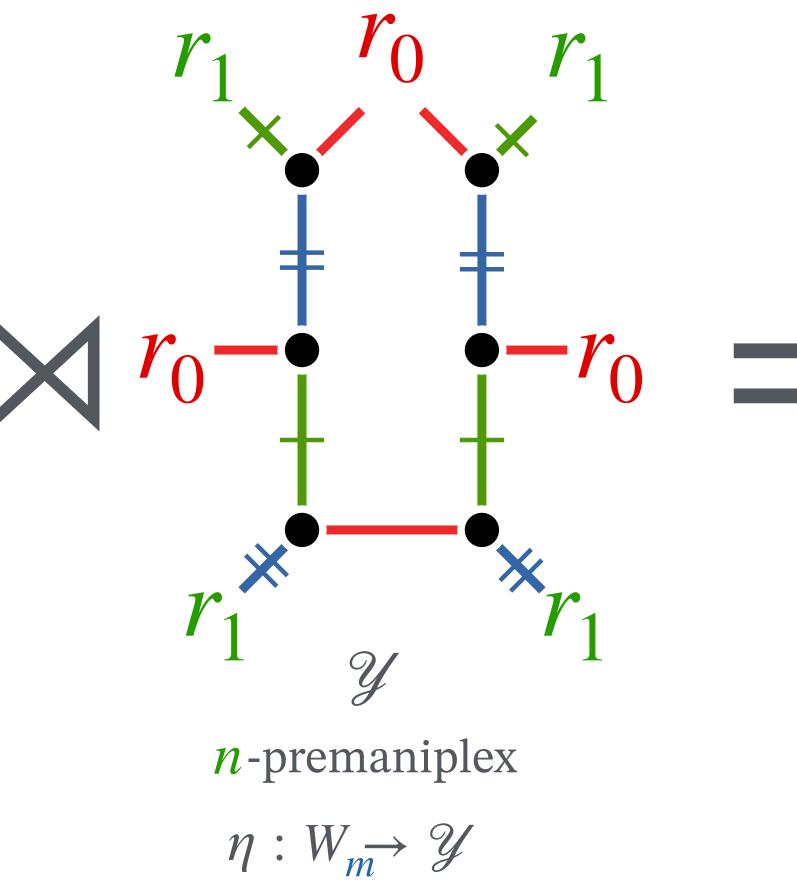
voltage assignment



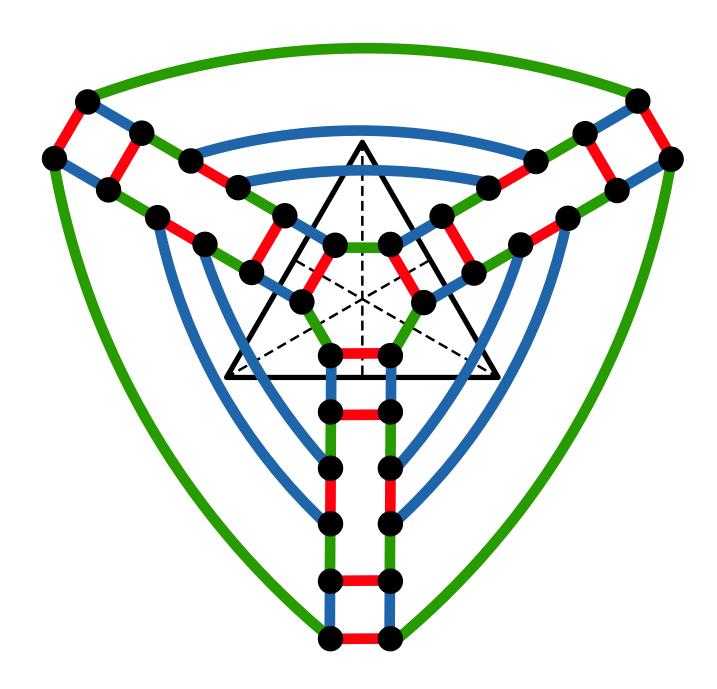
• An (*m*, *n*)- voltage operation:



m-premaniplex

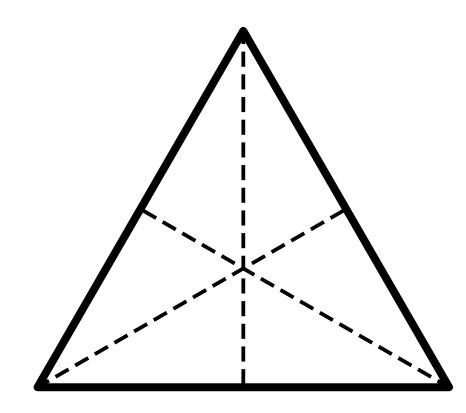


voltage assignment

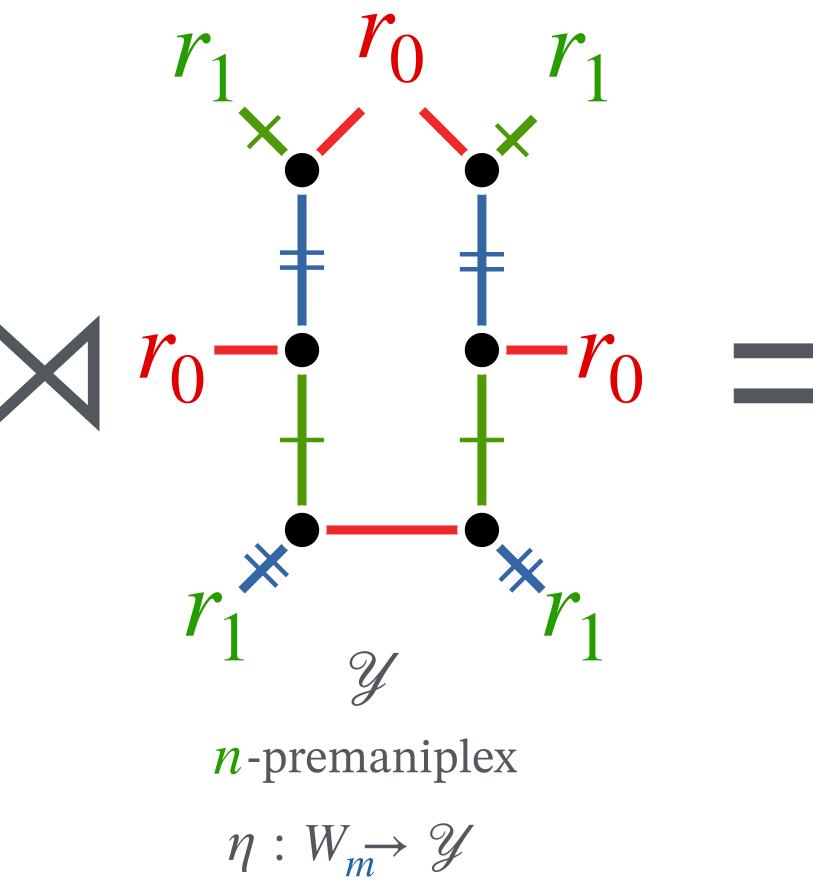


n-premaniplex

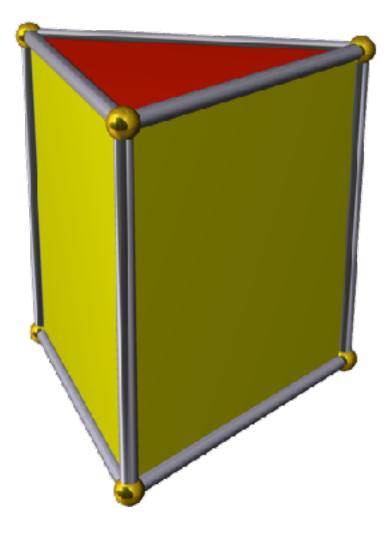
• An (*m*, *n*)- voltage operation:



m-premaniplex

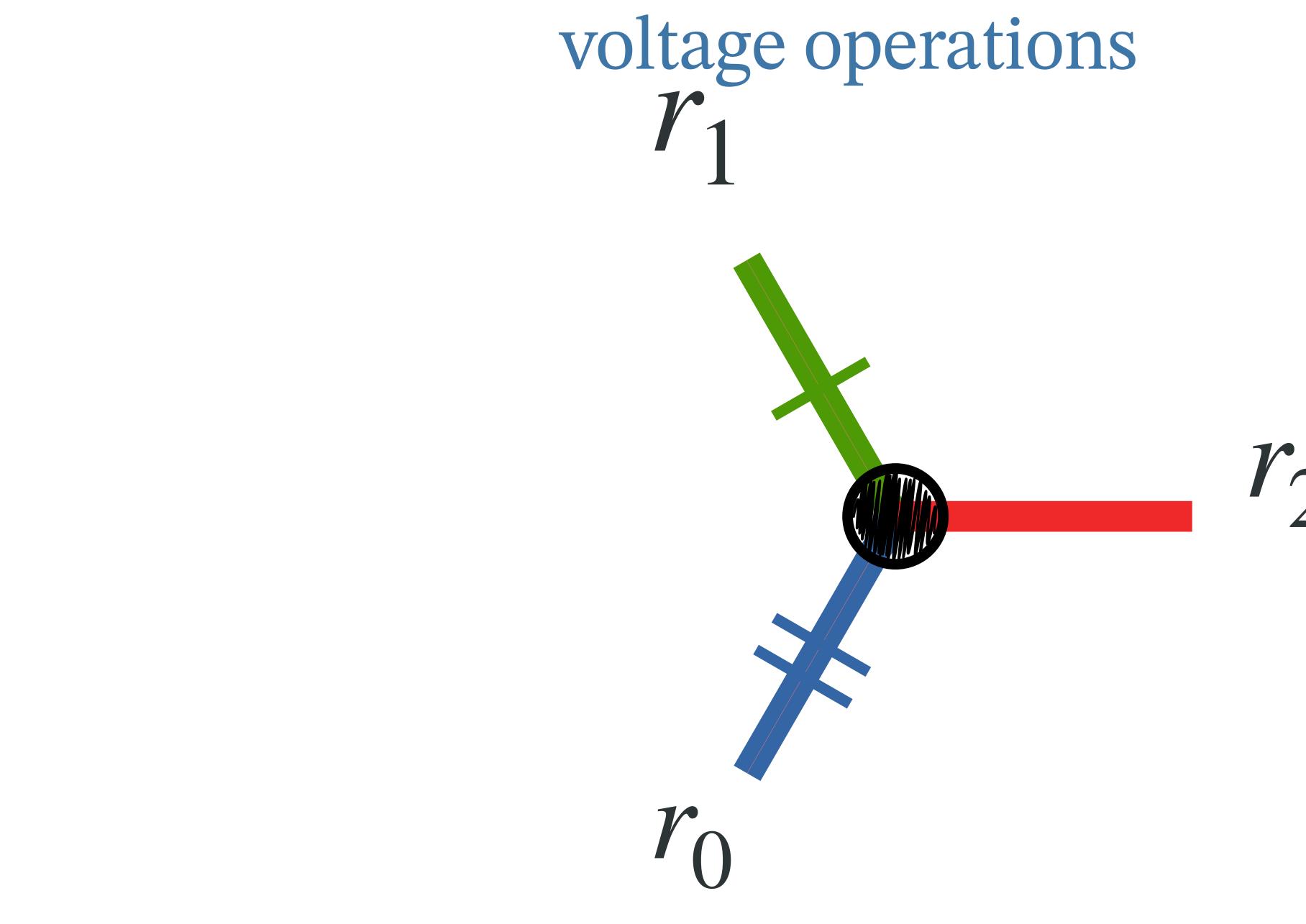


voltage assignment

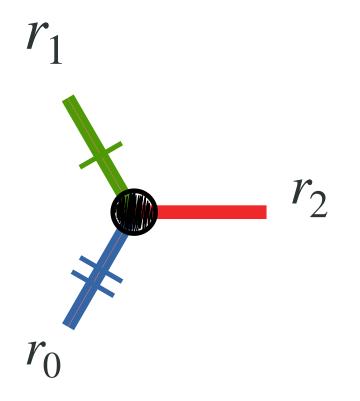


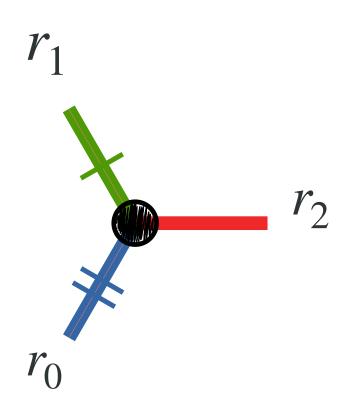
 $\mathcal{X} \Join_{\eta} \mathcal{Y}$

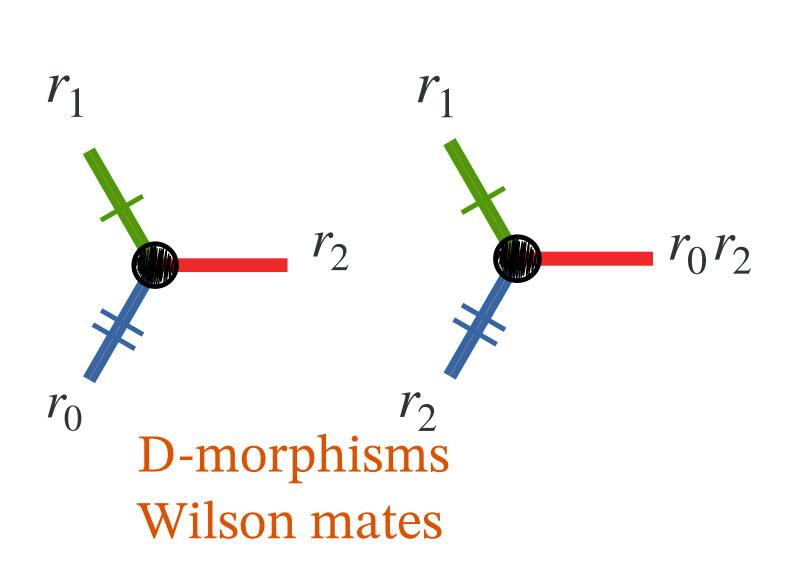
n-premaniplex

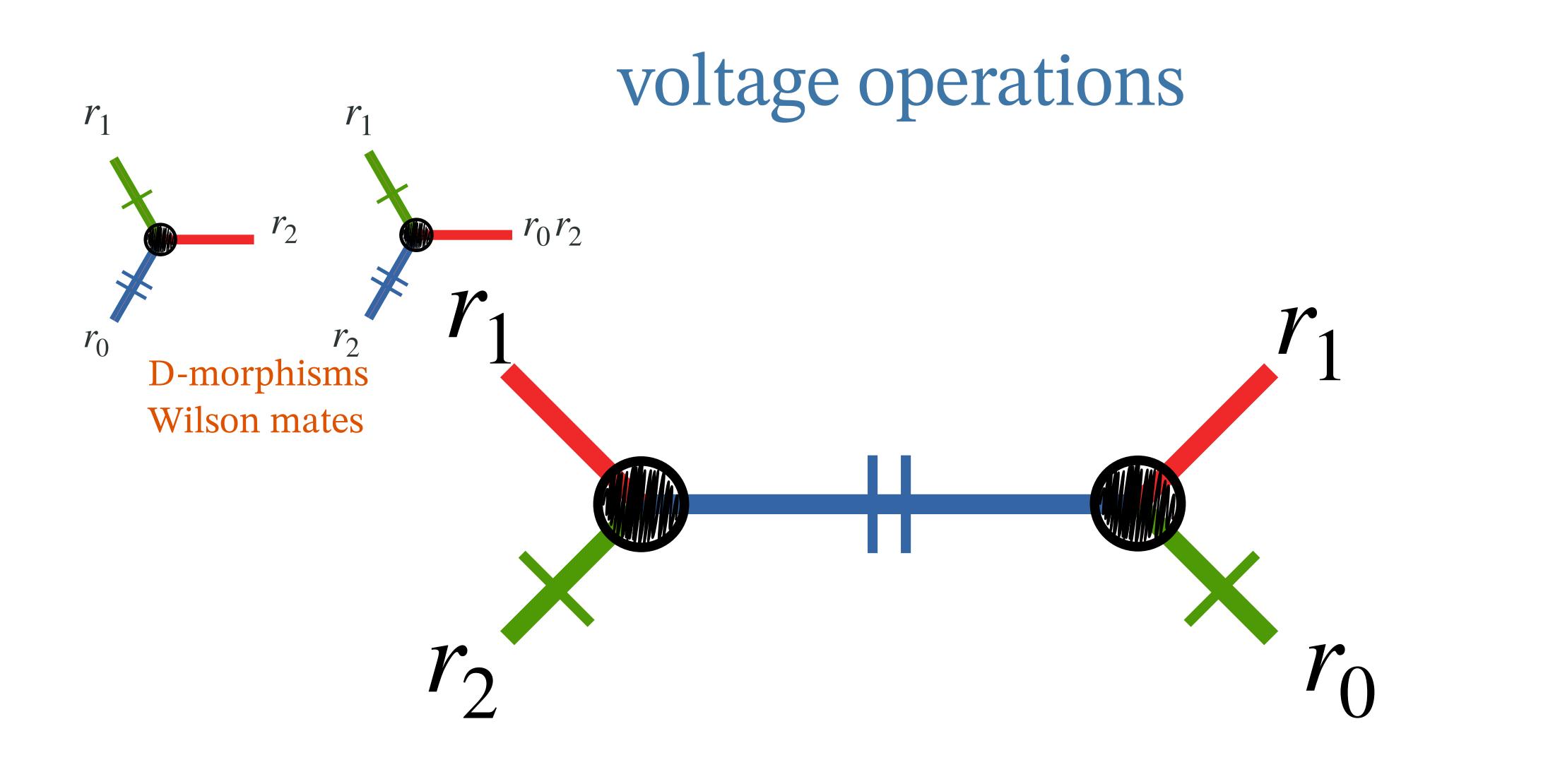


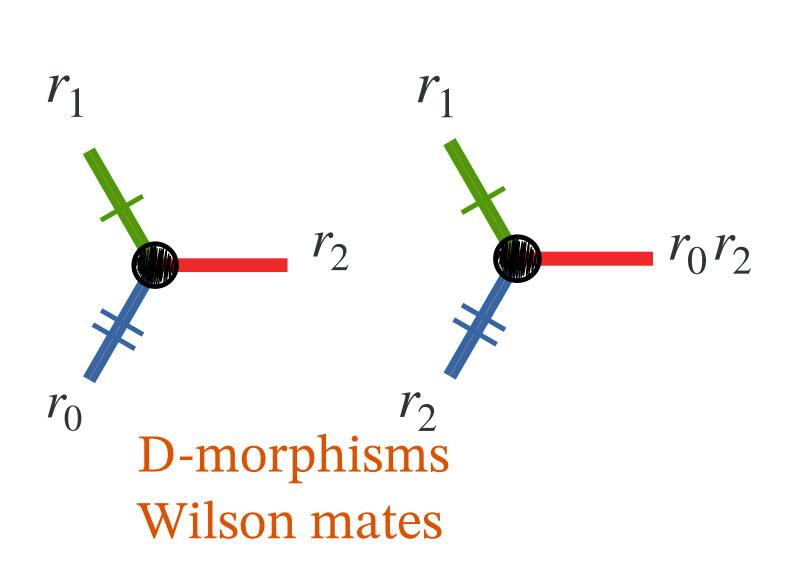
r_2

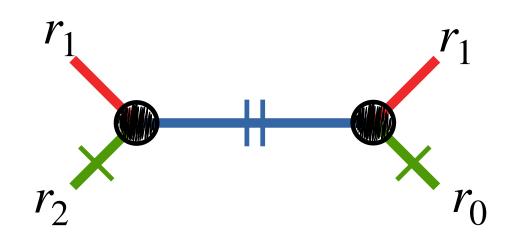


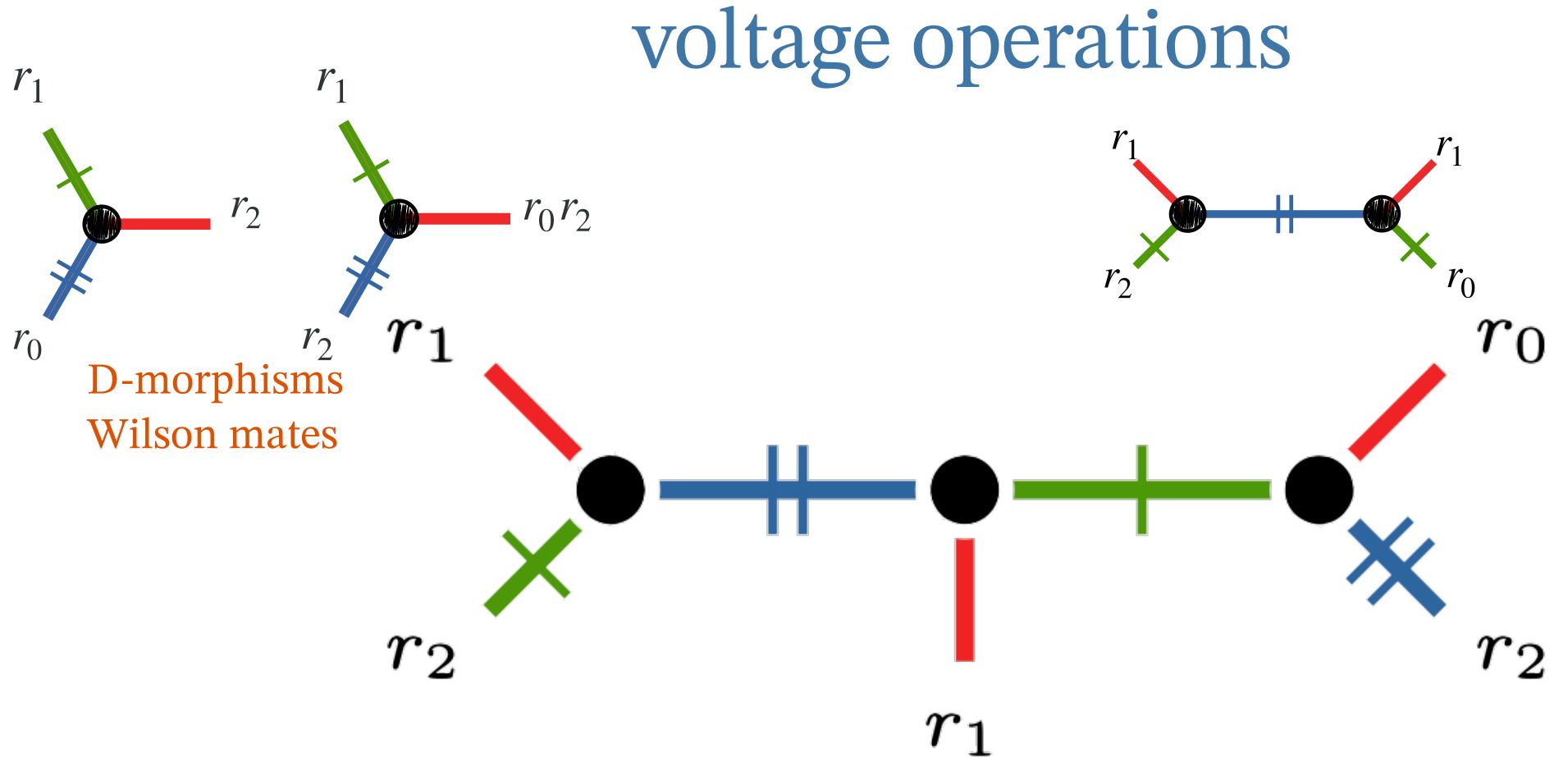


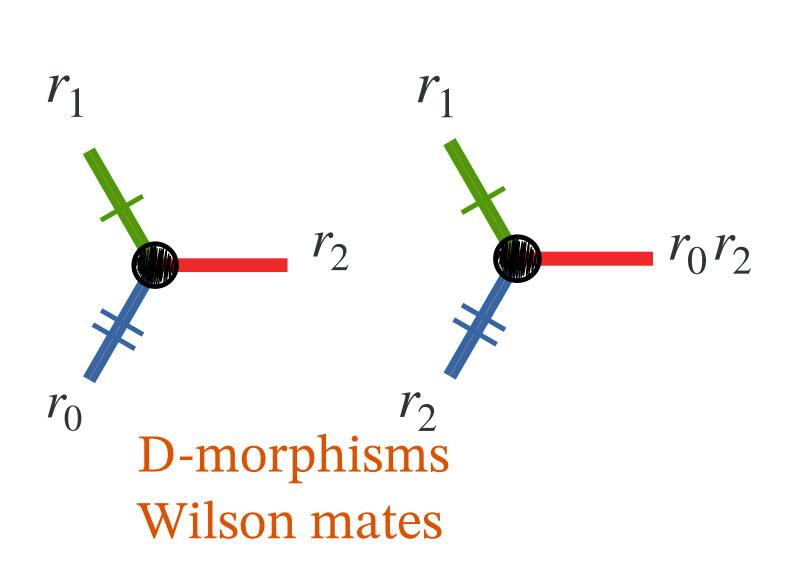


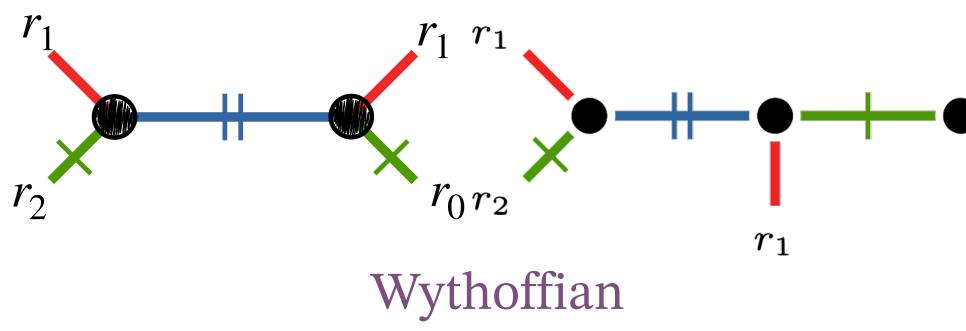


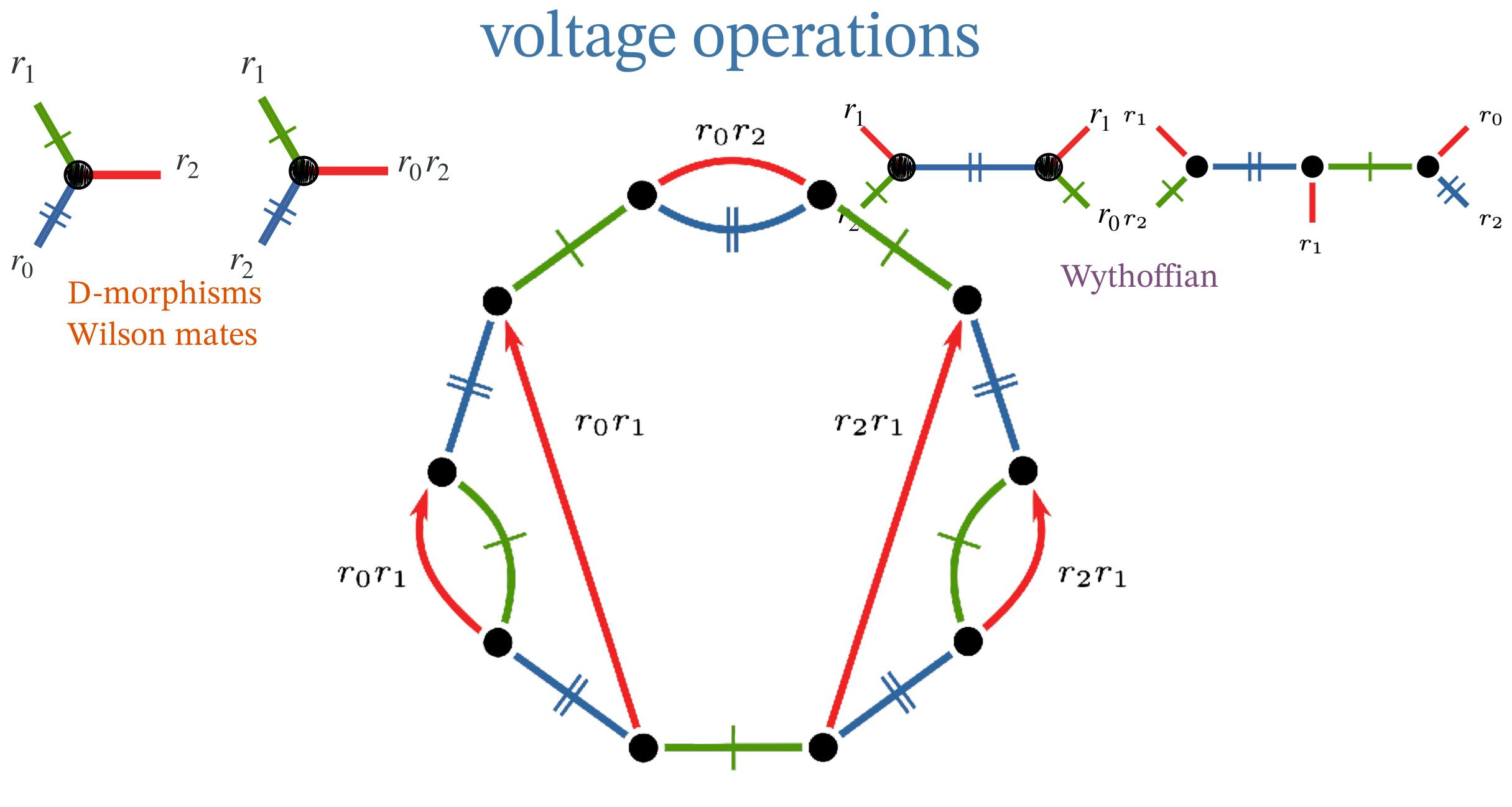


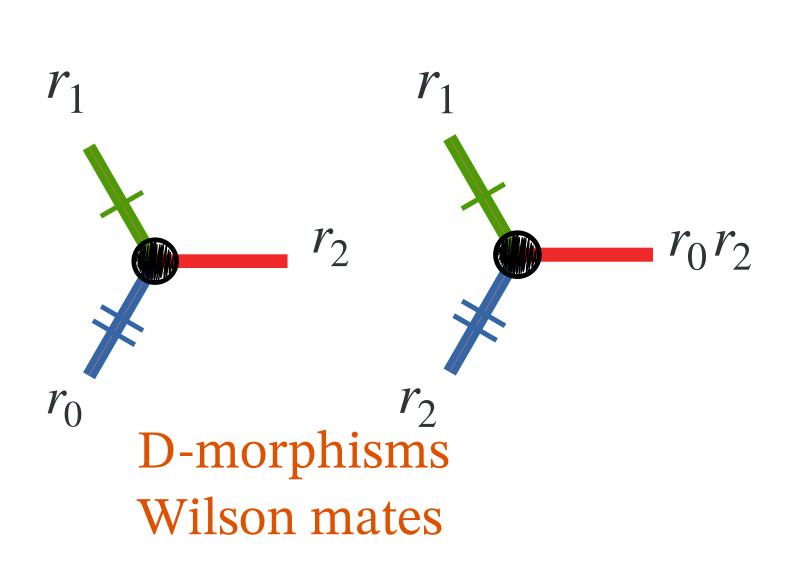


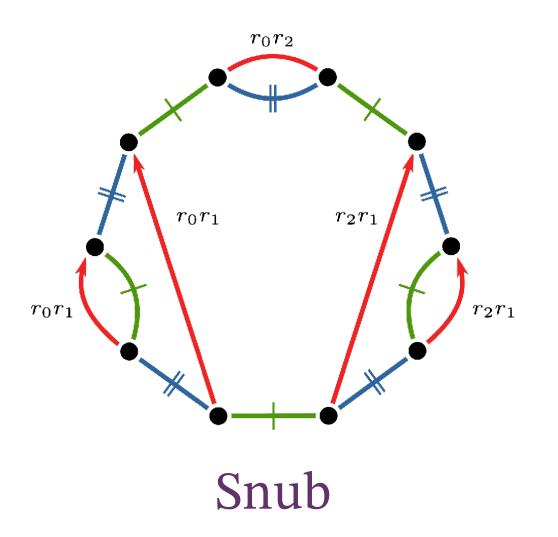


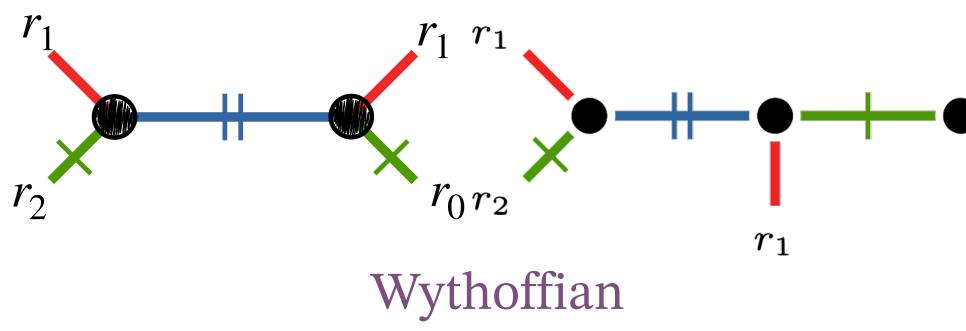


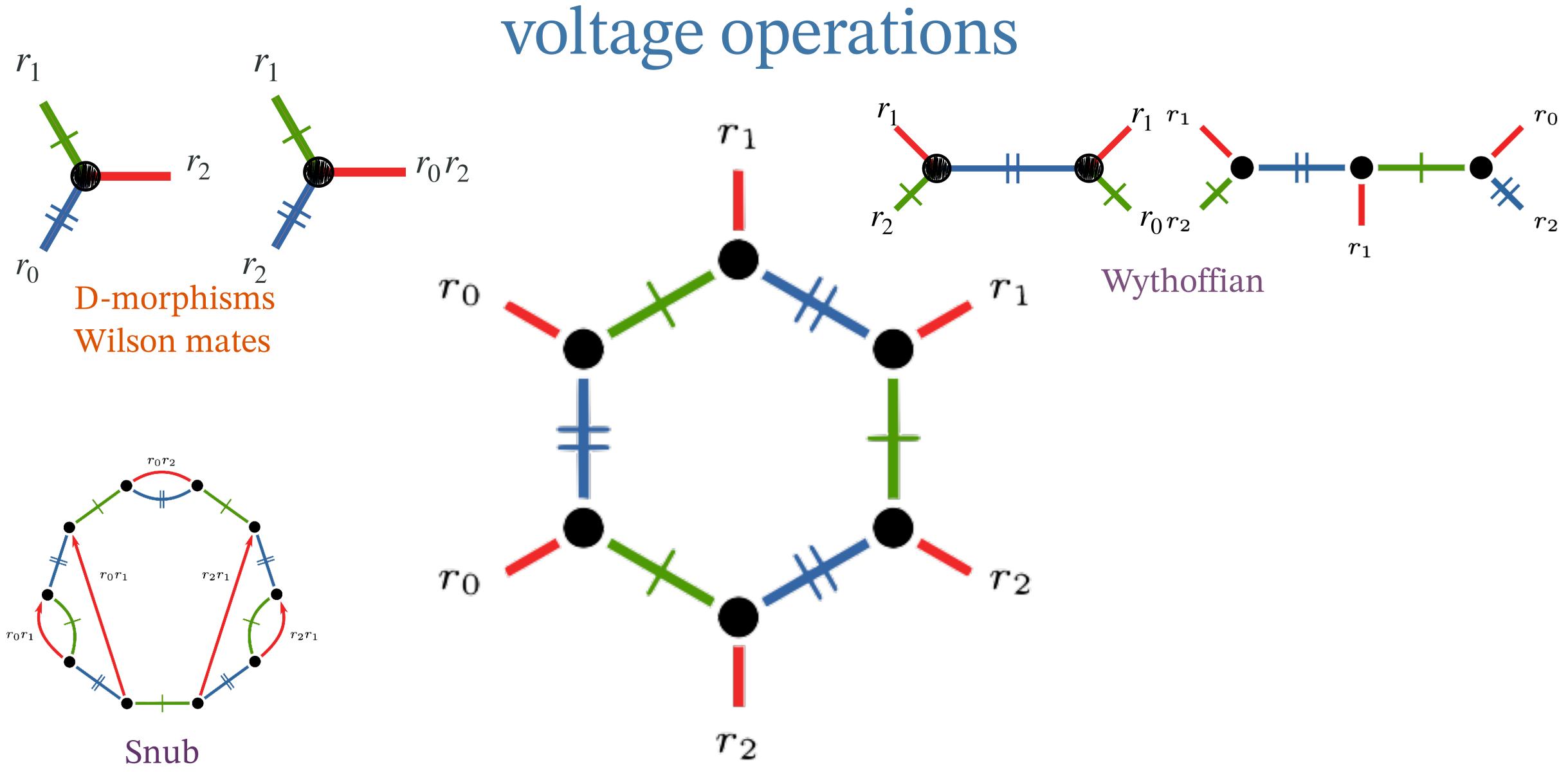


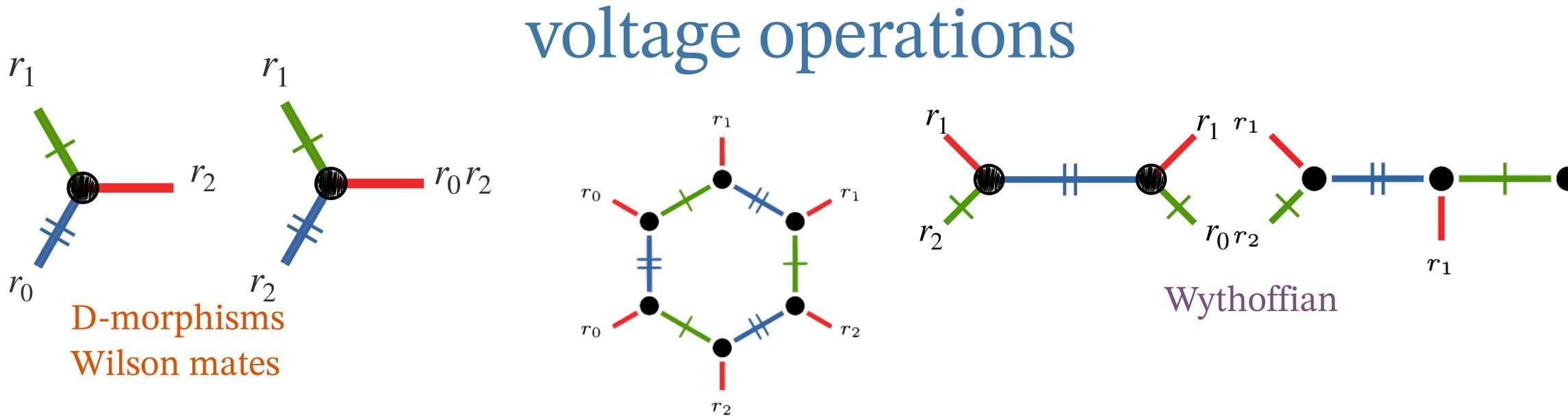


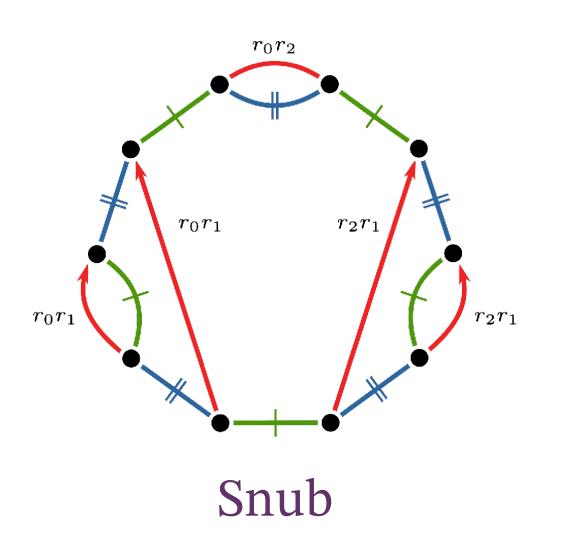


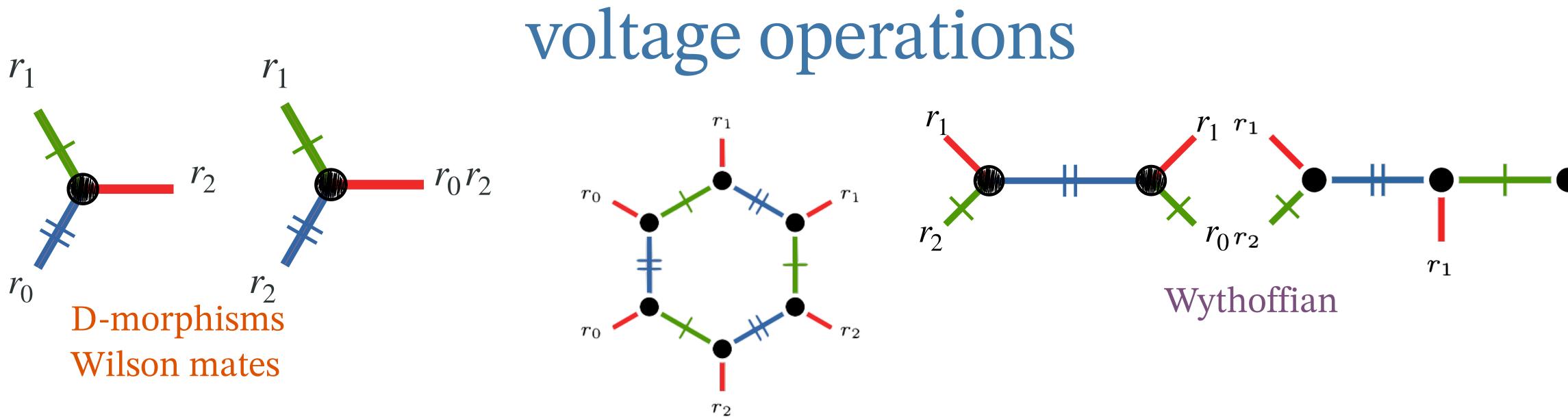




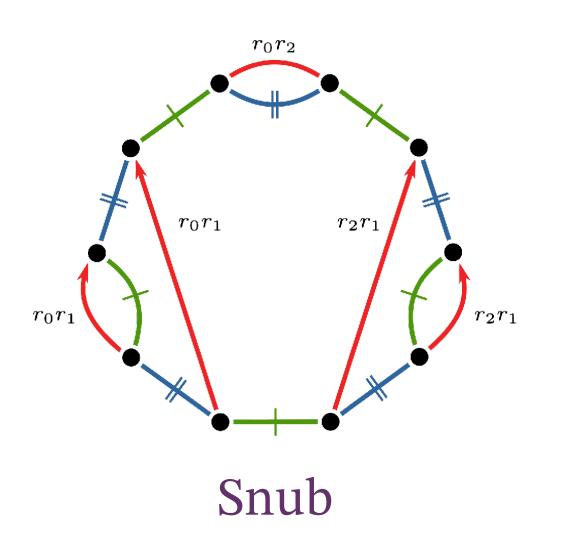


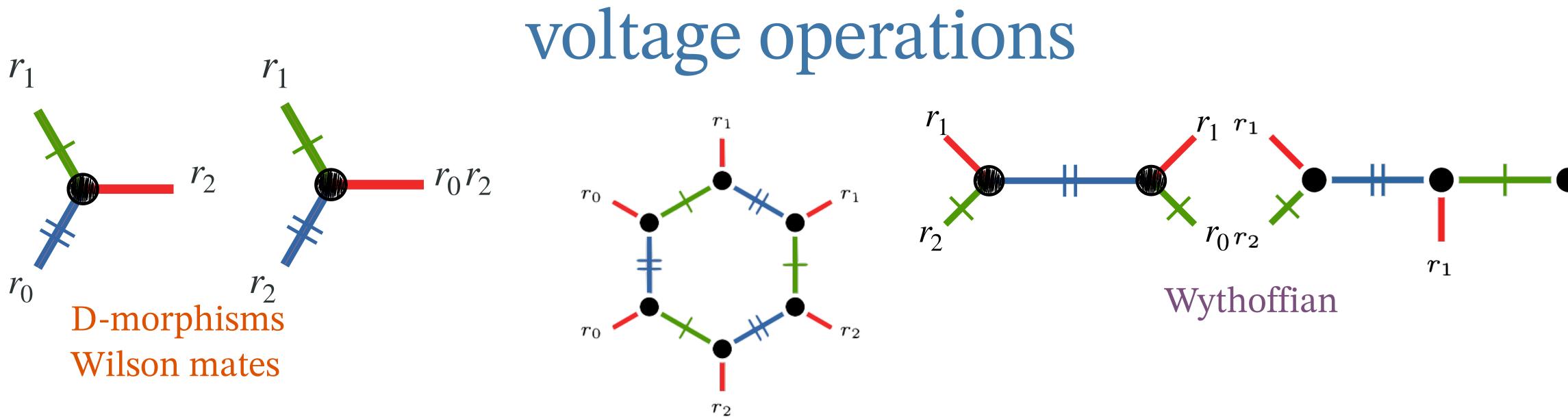




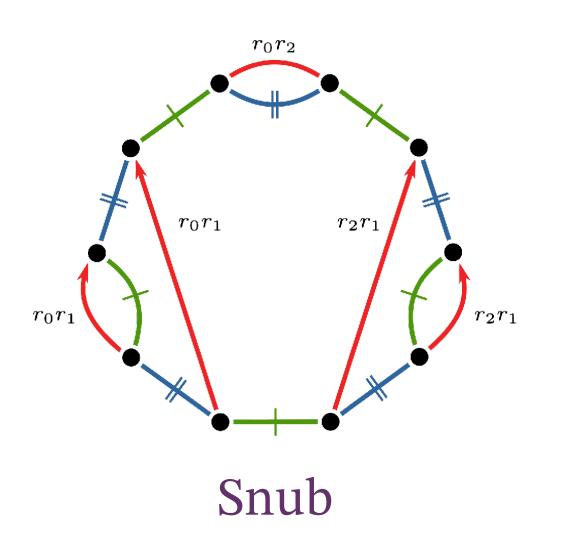


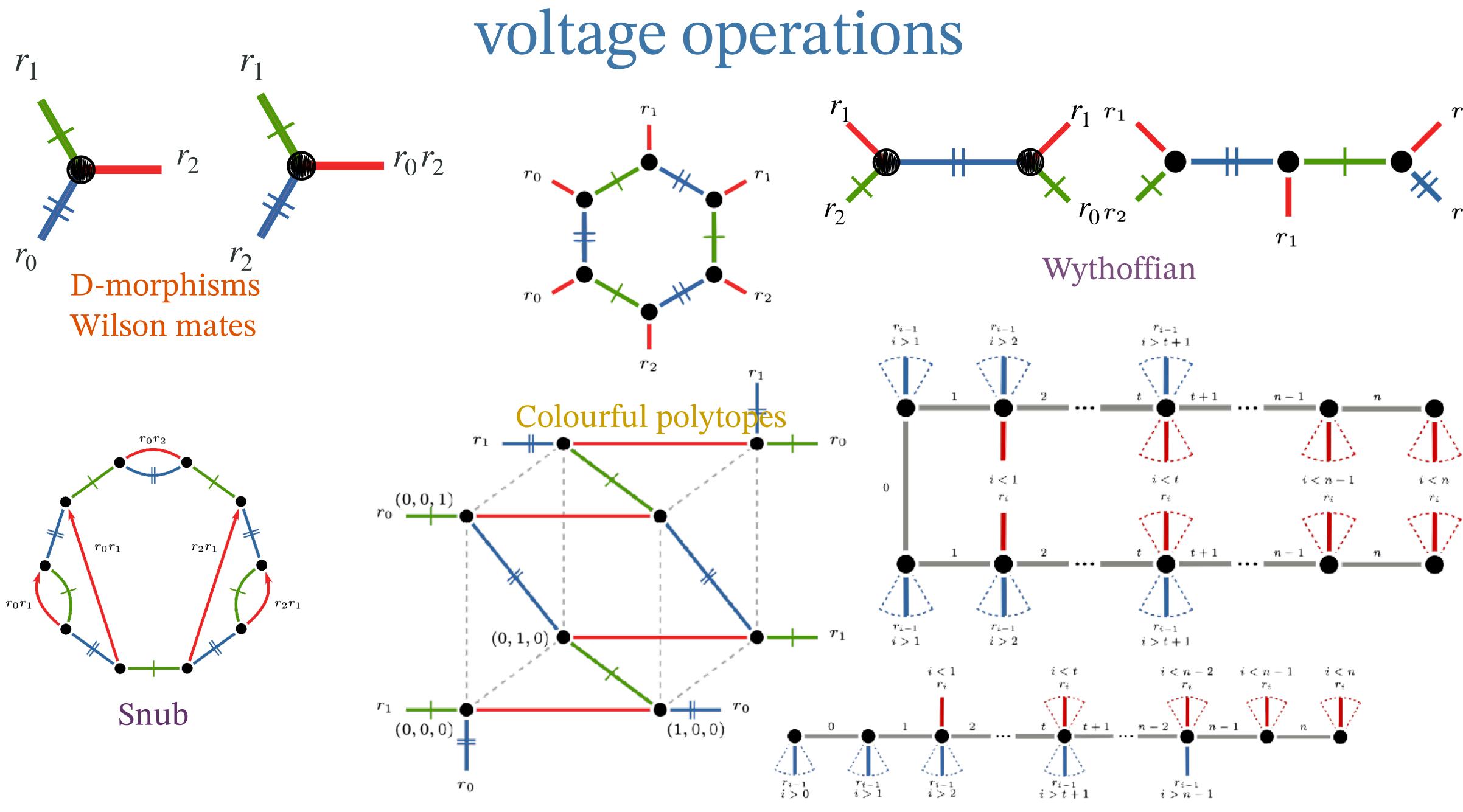
Colourful polytopes





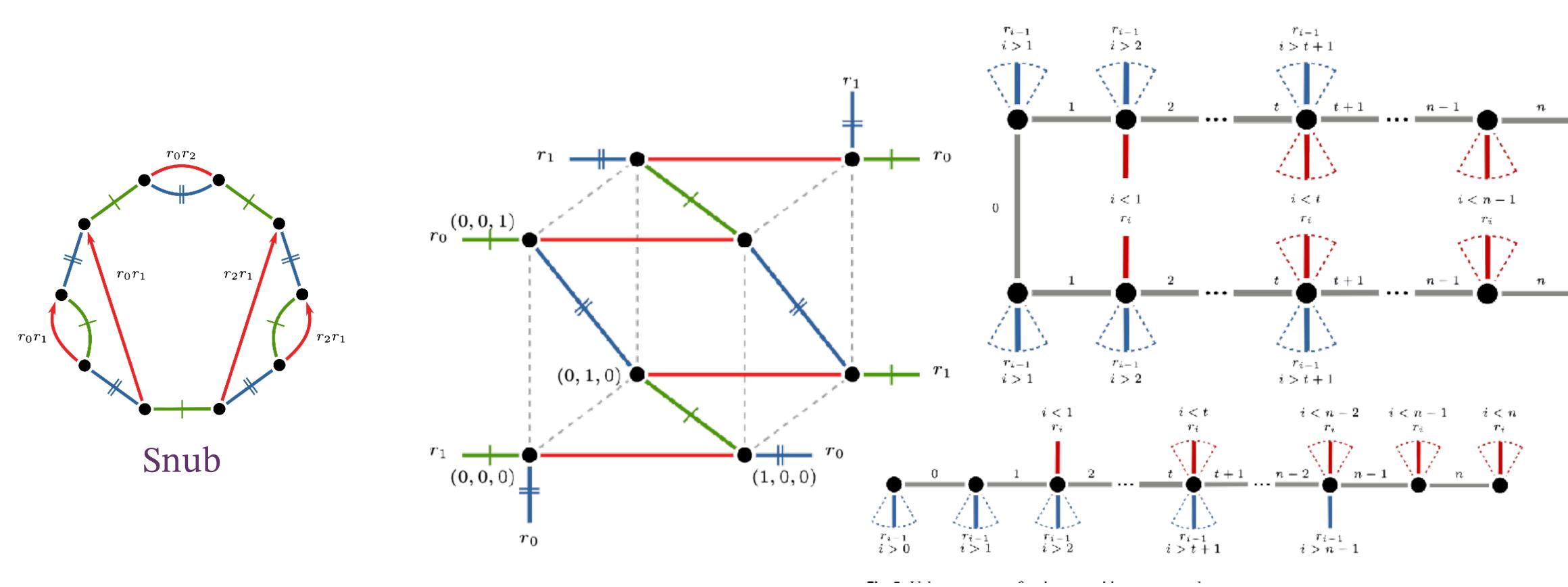
Colourful polytopes

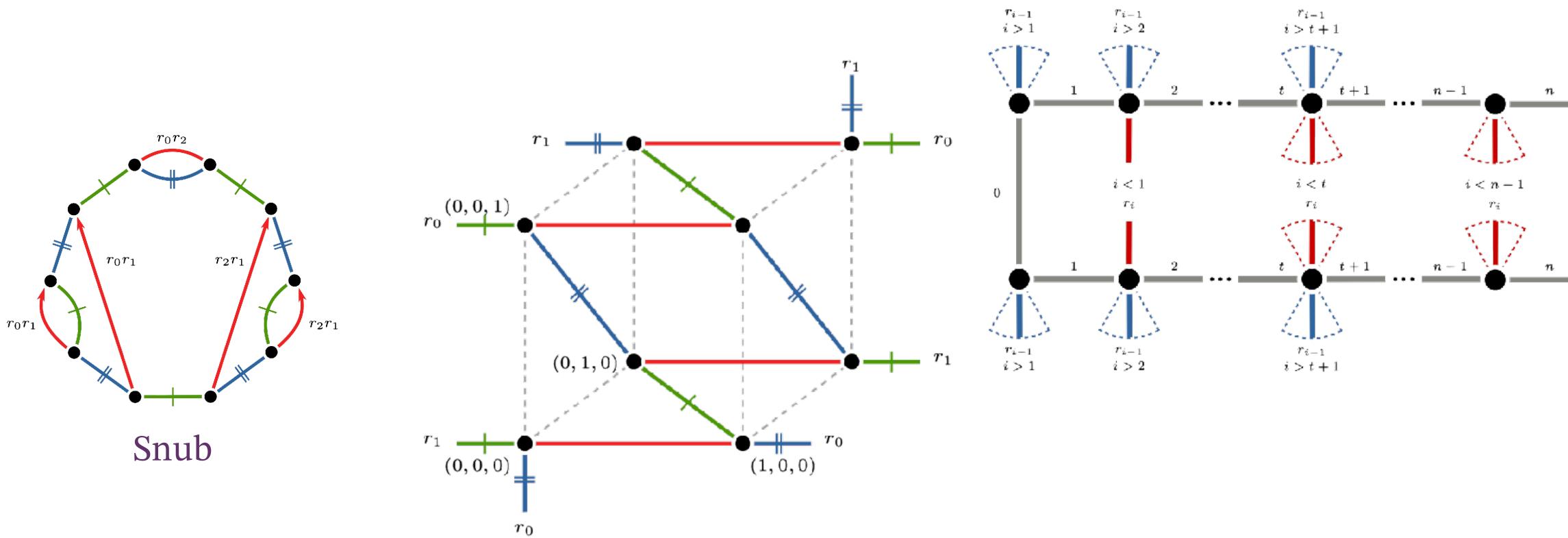


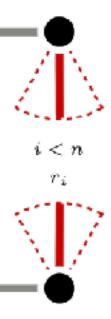


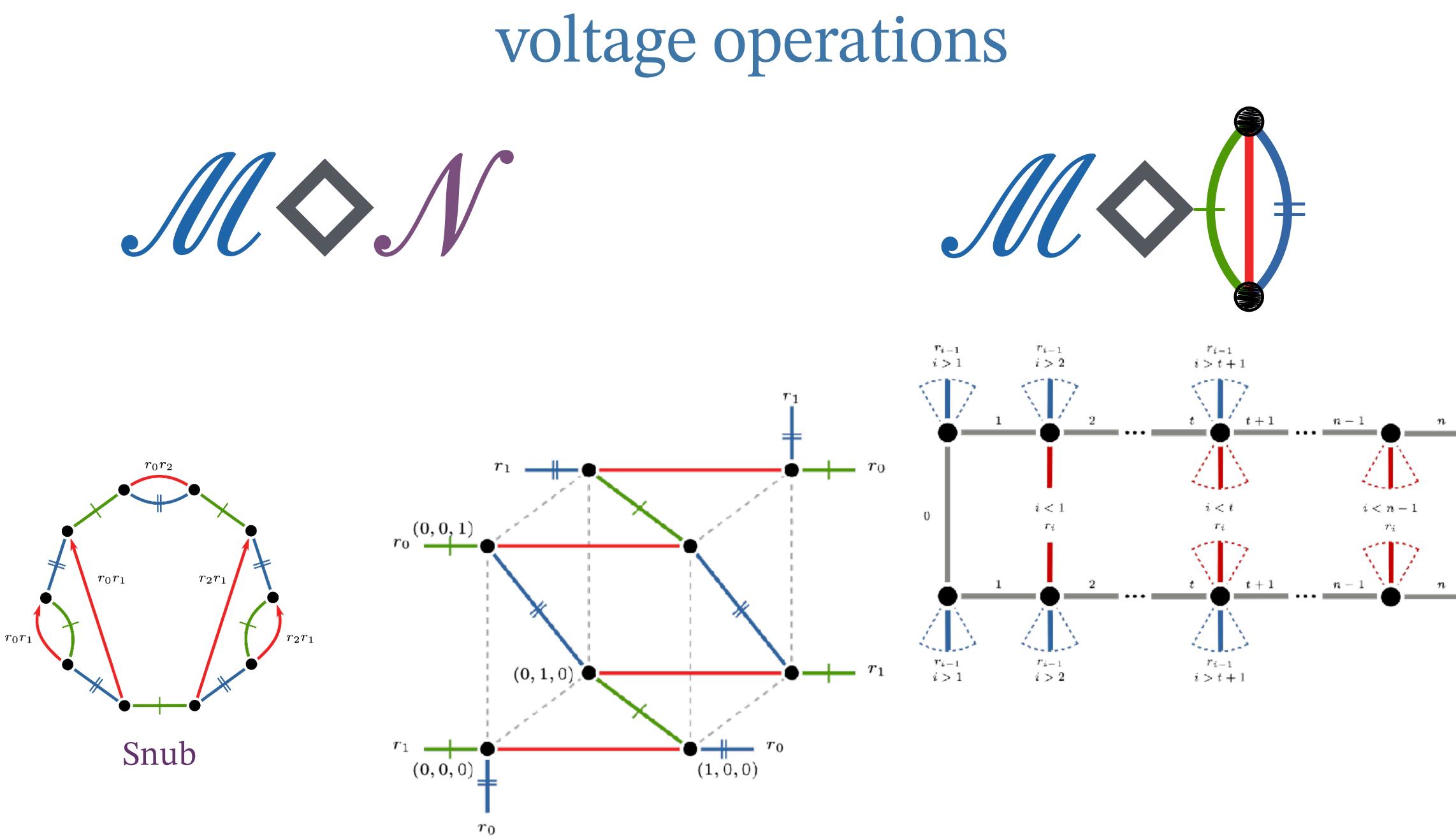
-- - ---

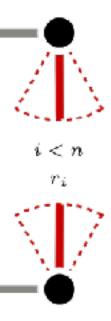
. .











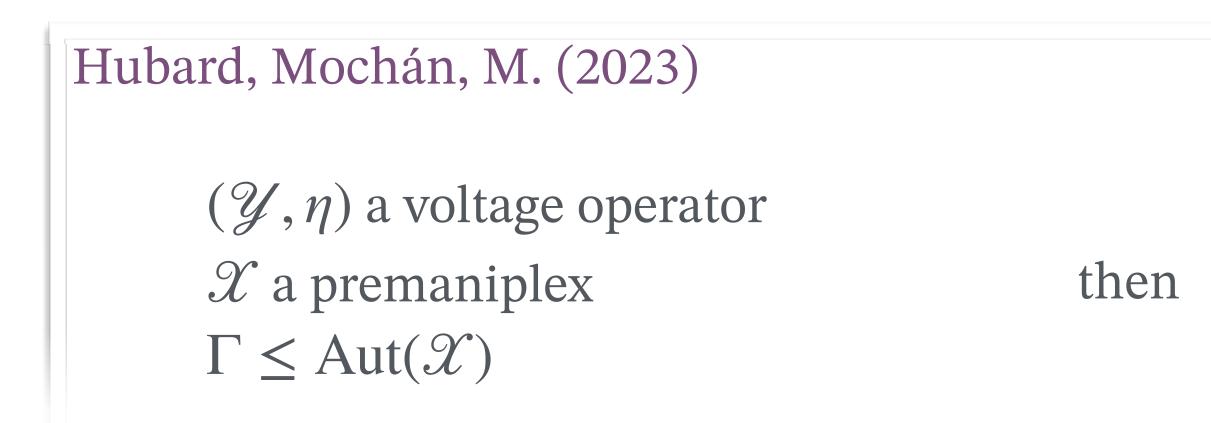
 (\mathcal{Y}, η) a voltage operator \mathcal{X} a premaniplex $\Gamma \leq \operatorname{Aut}(\mathscr{X})$

then

voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_{\eta} \mathscr{Y})$

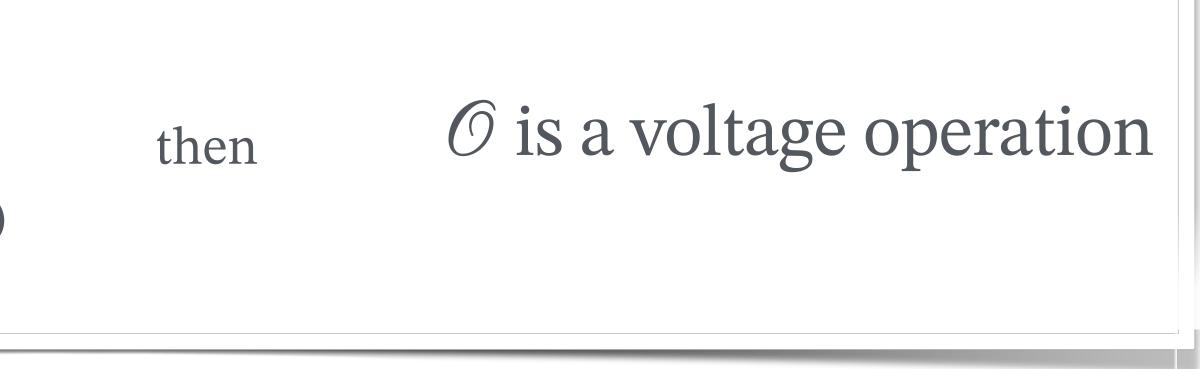
$(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_{\eta} \mathscr{Y}$

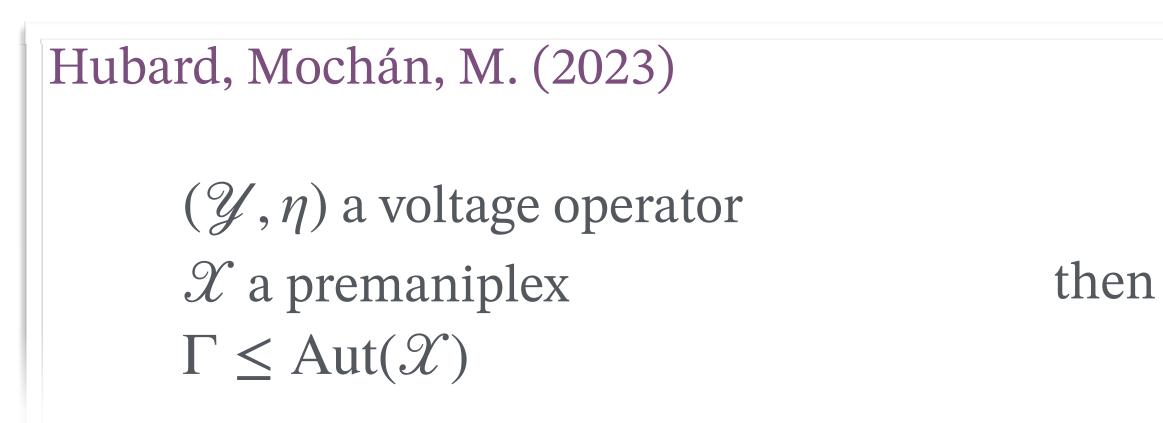


$$\mathcal{O}:\mathcal{X}\mapsto\mathcal{O}(\mathcal{X})$$

 $\operatorname{Aut}(\mathscr{X}) \leq \operatorname{Aut}(\mathscr{O}(\mathscr{X}))$ $\mathcal{O}(\mathcal{U}/\Gamma) \cong \mathcal{O}(\mathcal{U})/\Gamma \quad \forall \Gamma \leq \operatorname{Aut}(\mathcal{U})$

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$ $(\mathscr{X} \rtimes_n \mathscr{Y})/\Gamma \cong (\mathscr{X}/\Gamma) \rtimes_n \mathscr{Y}$

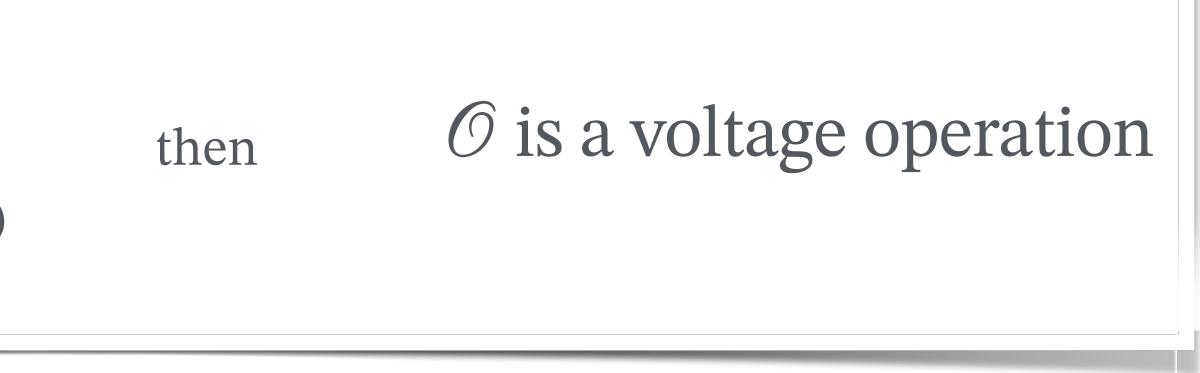




$$\mathcal{O}:\mathcal{X}\mapsto\mathcal{O}(\mathcal{X})$$

 $\operatorname{Aut}(\mathscr{X}) \leq \operatorname{Aut}(\mathscr{O}(\mathscr{X}))$ $\mathcal{O}(\mathcal{U}/\Gamma) \cong \mathcal{O}(\mathcal{U})/\Gamma \quad \forall \Gamma \leq \operatorname{Aut}(\mathcal{U})$

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$ $(\mathscr{X} \rtimes_n \mathscr{Y})/\Gamma \cong (\mathscr{X}/\Gamma) \rtimes_n \mathscr{Y}$



 $\mathcal{O}: \mathcal{X} \mapsto \mathcal{O}(\mathcal{X})$

 $\operatorname{Aut}(\mathscr{X}) \leq \operatorname{Aut}(\mathscr{O}(\mathscr{X}))$ $\mathcal{O}(\mathcal{U}/\Gamma) \cong \mathcal{O}(\mathcal{U})/\Gamma \quad \forall \Gamma \leq \operatorname{Aut}(\mathcal{U})$

voltage operations

then

\mathcal{O} is a voltage operation

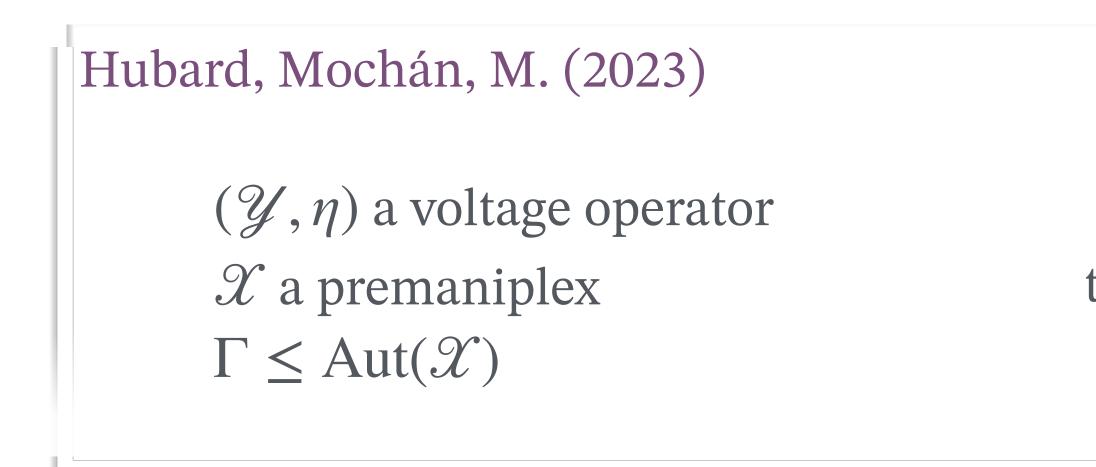
 (\mathcal{Y}, η) a voltage operator \mathcal{X} a premaniplex $\Gamma \leq \operatorname{Aut}(\mathscr{X})$

then

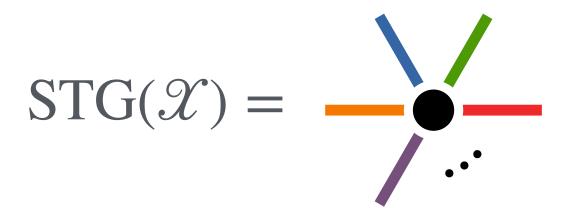
voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_{\eta} \mathscr{Y})$

$(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_{\eta} \mathscr{Y}$



\mathcal{X} a regular (reflexible) maniplex

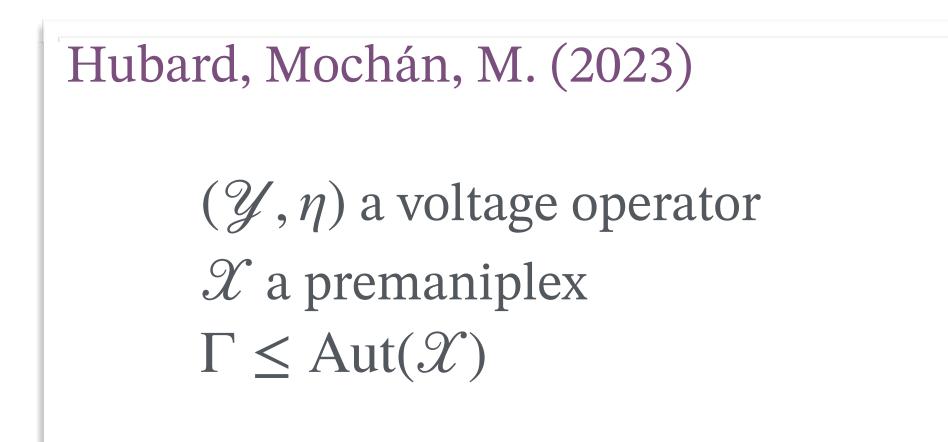


voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_{\eta} \mathscr{Y})$

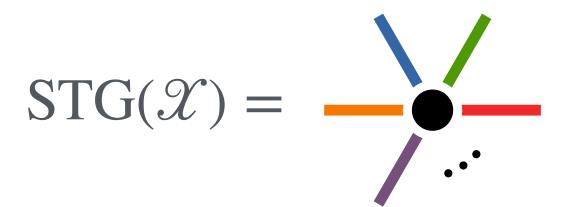
then

$(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_{\eta} \mathscr{Y}$



then

\mathcal{X} a regular (reflexible) maniplex



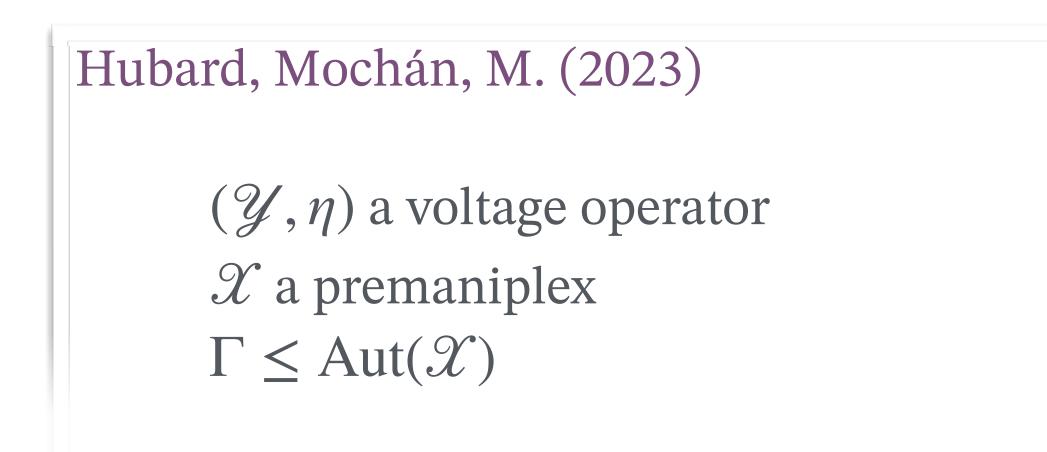
voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$

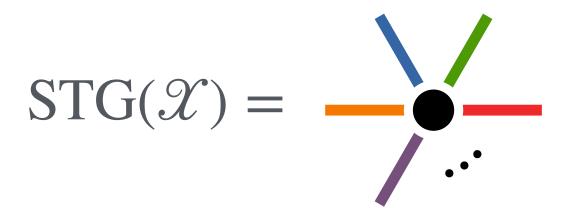
$(\mathscr{X} \rtimes_n \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_n \mathscr{Y}$

\mathcal{Y} arbitrary premaniplex

 $\operatorname{STG}(\mathscr{X} \rtimes_n \mathscr{Y}) = (\mathscr{X} \rtimes_n \mathscr{Y})/\operatorname{Aut}(\mathscr{X})$



\mathcal{X} a regular (reflexible) maniplex



voltage operations

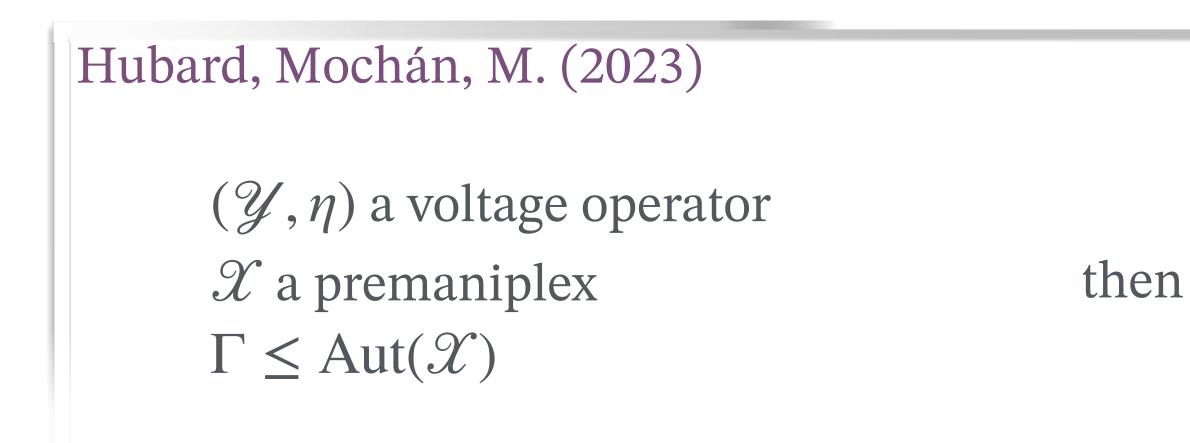
 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$

then

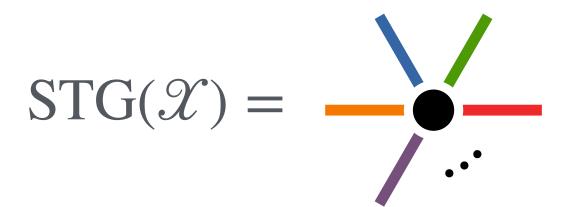
$(\mathscr{X} \rtimes_n \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_n \mathscr{Y}$

¥ arbitrary premaniplex

$\operatorname{STG}(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) = (\mathscr{X} \rtimes_{\eta} \mathscr{Y})/\operatorname{Aut}(\mathscr{X})$ $\cong (\mathscr{X}/\operatorname{Aut}(\mathscr{X})) \rtimes_n \mathscr{Y}$



\mathcal{X} a regular (reflexible) maniplex

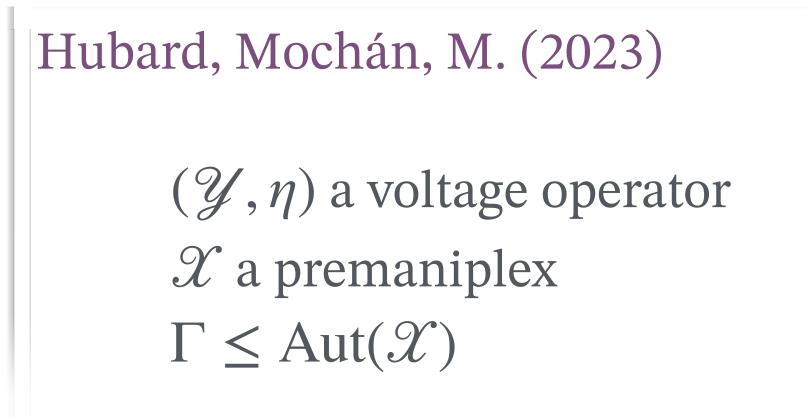


voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$ $(\mathscr{X} \rtimes_n \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_n \mathscr{Y}$

\mathcal{Y} arbitrary premaniplex

 $\operatorname{STG}(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) = (\mathscr{X} \rtimes_{\eta} \mathscr{Y})/\operatorname{Aut}(\mathscr{X})$ $\cong (\mathscr{X}/\operatorname{Aut}(\mathscr{X})) \rtimes_n \mathscr{Y} \cong \mathscr{Y}$



 \mathcal{X} a regular (reflexible) maniplex $STG(\mathcal{X}) =$

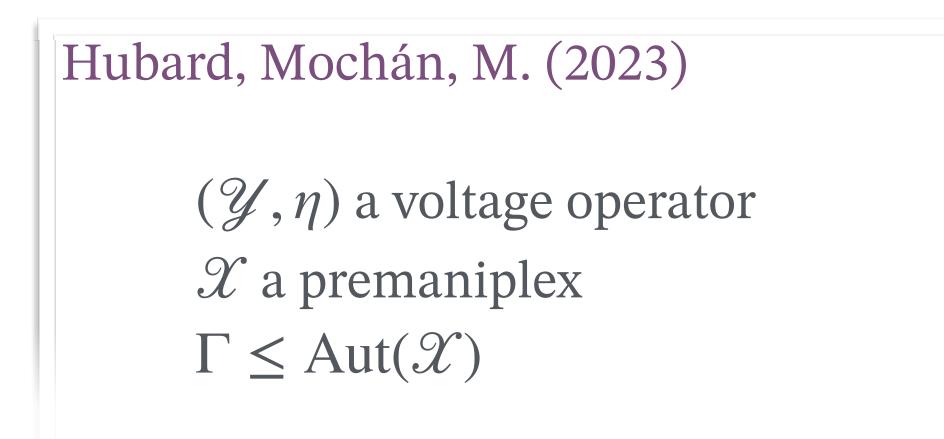
 $\cong (\mathscr{X}/\operatorname{Aut}(\mathscr{X})) \rtimes_n \mathscr{Y}$ $\cong \mathcal{Y}$

voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$

$(\mathscr{X} \rtimes_n \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_n \mathscr{Y}$

 \mathcal{Y} arbitrary premaniplex $\mathrm{STG}(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) = (\mathscr{X} \rtimes_{\eta} \mathscr{Y})/\mathrm{Aut}(\mathscr{X})$ $\mathscr{X} \rtimes_n \mathscr{Y}$ might have unexpected symmetry:



then

 \mathcal{X} a regular (reflexible) maniplex $STG(\mathcal{X}) =$

 $\cong (\mathscr{X}/\operatorname{Aut}(\mathscr{X})) \rtimes_n \mathscr{Y}$ $\cong \mathcal{Y}$

voltage operations

 $\Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$

$(\mathscr{X} \rtimes_n \mathscr{Y}) / \Gamma \cong (\mathscr{X} / \Gamma) \rtimes_n \mathscr{Y}$

 \mathcal{Y} arbitrary premaniplex $\mathrm{STG}(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) = (\mathscr{X} \rtimes_{\eta} \mathscr{Y})/\mathrm{Aut}(\mathscr{X})$ $\mathscr{X} \rtimes_n \mathscr{Y}$ might have unexpected symmetry:

 $\operatorname{Aut}(\mathscr{X}) \lneq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$

Symmetries of voltage operations on maniplexes and polytopes

Symmetries of voltage operations on maniplexes and polytopes

Symmetries of voltage operations

Map operations and *k*-orbit maps

Alen Orbanić^{a,1}, Daniel Pellicer^b, Asia Ivić Weiss^{b,2}

^a University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 21, 1000 Ljubljana, Slovenia ^b York University, Department of Mathematics and Statistics, Toronto, Ontario, Canada, M3J 1P3

ARTICLE INFO	ABS
<i>Article history:</i> Received 20 May 2008 Available online 18 September 2009	A k-o its au and c the ca maps
Keywords: Maps	

S T R A C T

orbit map is a map with k flag-orbits under the action of stomorphism group. We give a basic theory of k-orbit maps classify them up to $k \leq 4$. "Hurwitz-like" upper bounds for ardinality of the automorphism groups of 2-orbit and 3-orbit on surfaces are given. Furthermore, we consider effects of tions liles modial and transation on learhit mans and use

Proposition 4.3. Let M = (C/N, C) be a k-orbit map. Then Tr(M) is either a k-orbit map, a $\frac{3k}{2}$ -orbit map or a 3k-orbit map.

Proof. There are three cosets in $C_3/3^0_3$, namely 3^0_3a , $a \in A = \{id, s_1, s_{121}\}$. Therefore, every element $x \in C_3$ is of the form x = ta, $t \in 3^0_3$, $a \in A$.

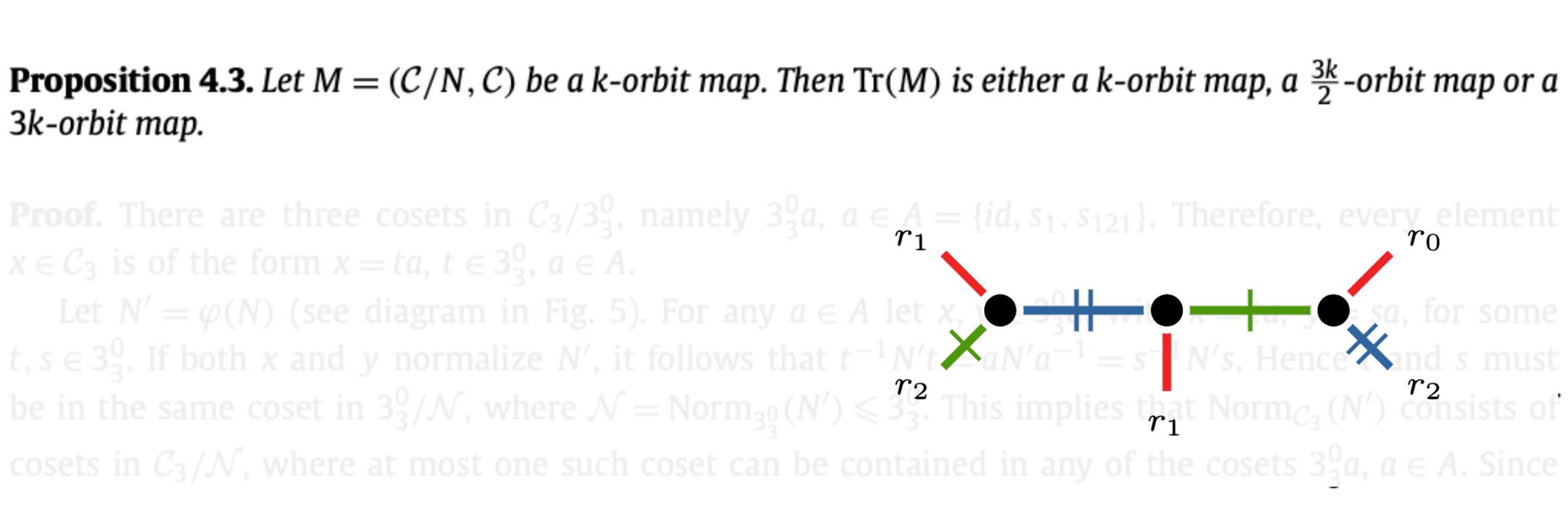
Let $N' = \varphi(N)$ (see diagram in Fig. 5). For any $a \in A$ let $x, y \in 3^0_3 a$, with x = ta, y = sa, for some $t, s \in 3^0_3$. If both x and y normalize N', it follows that $t^{-1}N't = aN'a^{-1} = s^{-1}N's$. Hence t and s must be in the same coset in $3_3^0/\mathcal{N}$, where $\mathcal{N} = \operatorname{Norm}_{3_3^0}(N') \leq 3_3^0$. This implies that $\operatorname{Norm}_{\mathcal{C}_3}(N')$ consists of cosets in $\mathcal{C}_3/\mathcal{N}$, where at most one such coset can be contained in any of the cosets 3^0_3a , $a \in A$. Since

Proposition 4.3. Let M = (C/N, C) be a k-orbit map. Then Tr(M) is either a k-orbit map, a $\frac{3k}{2}$ -orbit map or a 3k-orbit map.

be in the same coset in $3_3^0/N$, where $\mathcal{N} = \operatorname{Norm}_{3_2}(N') \leq 3_3^0$. This implies that $\operatorname{Norm}_{\mathcal{C}_3}(N')$ consists of

Proposition 4.3. Let M = (C/N, C) be a k-orbit map. Then Tr(M) is either a k-orbit map, a $\frac{3k}{2}$ -orbit map or a 3k-orbit map.

Proof. There are three cosets in $\mathcal{C}_3/3^0_3$, namely 3^0_3a , $a \in A = \{id, s_1, s_{121}\}$. Let $N' = \varphi(N)$ (see diagram in Fig. 5). For any $a \in A$ let $x, y \in \frac{30}{34}$ with



from the fact that $[3_3^0:\mathcal{N}] = k$. \Box

We illustrate the proposition with the following examples.

truncating the 2-orbit map given in Fig. 6(b) (belonging to class 2_{01}).

tant role for the truncation operation, as is shown by the following two results.

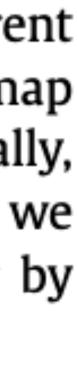
Proposition 4.4. Let M = (C/N, C) be a k-orbit map such that Tr(M) is $\frac{3k}{2}$ -orbit or k-orbit. Then M must necessarily be 2₀₁-compatible.

 $u_1 = c_{1} + 1 + c_{2} = a_{1} + a_{2} = a_{2} + a_{3} = a_{1} + a_{2} = c_{1} + c_{2} + c_{2} + c_{2} + c_{3} + c_{4} + c_$

Symmetries of voltage operations

The truncations of the regular maps of Schläfli type {4, 4} and {6, 3} are have faces of two different sizes and therefore are 3-orbit maps. The truncation of the regular map $\{3, 6\}_{(t,0)}$ is the regular map $\{6, 3\}_{(t,t)}$, whereas the truncation of the regular map $\{3, 6\}_{(t,t)}$ is the regular map $\{6, 3\}_{(3t,0)}$. Finally, the map given in dotted lines in Fig. 6 is a 3-orbit map on an orientable surface of genus 2. As we can see, this map can be obtained by truncating the regular map $\{3, 8 | \cdot, \cdot, 2\}$ (see Fig. 6(a)) or by

The core of 3_3^0 is the index two subgroup $K = \langle s_0, s_{101}, s_{21012} \rangle$ of \mathcal{C}_3 . The group K plays an impor-



from the fact that $[3_3^0:\mathcal{N}] = k$. \Box

We illustrate the proposition with the following examples. The truncations of the regular maps of Schläfli type {4, 4} and {6, 3} are have faces of two different sizes and therefore are 3-orbit maps. The truncation of the regular map $\{3, 6\}_{(t,0)}$ is the regular map $\{6, 3\}_{(t,t)}$, whereas the truncation of the regular map $\{3, 6\}_{(t,t)}$ is the regular map $\{6, 3\}_{(3t,0)}$. Finally, the map given in dotted lines in Fig. 6 is a 3-orbit map on an orientable surface of genus 2. As we can see, this map can be obtained by truncating the regular map $\{3, 8 | \cdot, \cdot, 2\}$ (see Fig. 6(a)) or by truncating the 2-orbit map given in Fig. 6(b) (belonging to class 2_{01}).

The core of 3^0_3 is the index two subgroup $K = \langle s_0, s_{101}, s_{21012} \rangle$ of \mathcal{C}_3 . The group K plays an important role for the truncation operation, as is shown by the following two results.

necessarily be 201-compatible.

Symmetries of voltage operations

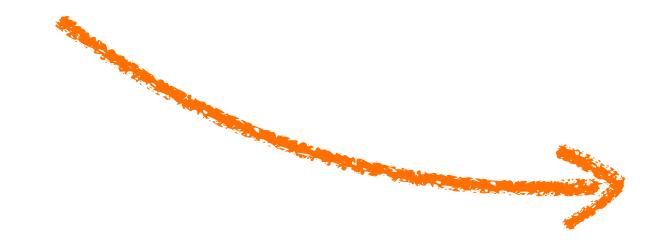
Proposition 4.4. Let $M = (\mathcal{C}/N, \mathcal{C})$ be a k-orbit map such that Tr(M) is $\frac{3k}{2}$ -orbit or k-orbit. Then M must

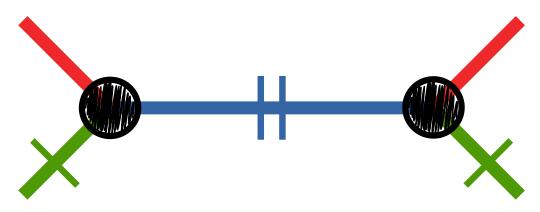
from the fact that $[3_3^0:\mathcal{N}] = k$. \Box

We illustrate the proposition with the following examples. The truncations of the regular maps of Schläfli type {4, 4} and {6, 3} are have faces of two different sizes and therefore are 3-orbit maps. The truncation of the regular map $\{3, 6\}_{(t,0)}$ is the regular map $\{6, 3\}_{(t,t)}$, whereas the truncation of the regular map $\{3, 6\}_{(t,t)}$ is the regular map $\{6, 3\}_{(3t,0)}$. Finally, the map given in dotted lines in Fig. 6 is a 3-orbit map on an orientable surface of genus 2. As we can see, this map can be obtained by truncating the regular map $\{3, 8 | \cdot, \cdot, 2\}$ (see Fig. 6(a)) or by truncating the 2-orbit map given in Fig. 6(b) (belonging to class 2_{01}). The core of 3_3^0 is the index two subgroup $K = \langle s_0, s_{101}, s_{21012} \rangle$ of C_3 . The group K plays an impor-

tant role for the truncation operation, as is shown by the following two results.

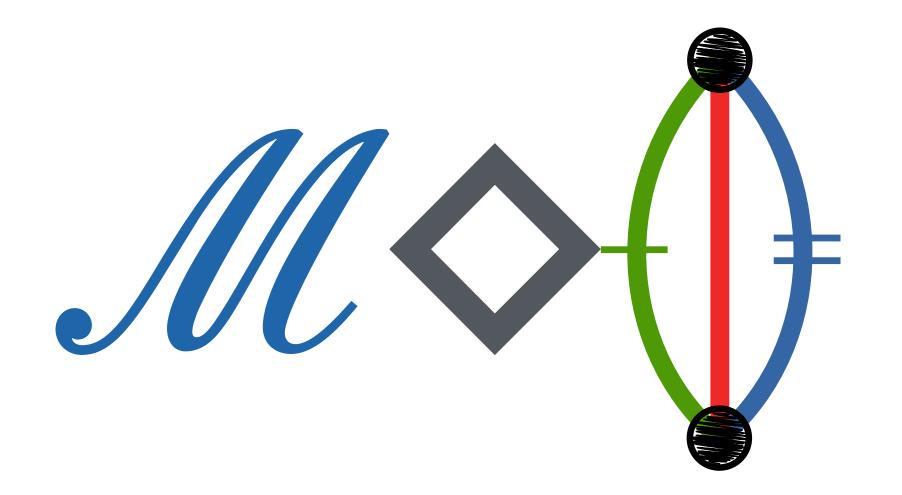
Proposition 4.4. Let M = (C/N, C) be a k-orbit map such that Tr(M) is $\frac{3k}{2}$ -orbit or k-orbit. Then M must necessarily be 201-compatible.





From now on, we shall assume that our voltage operations preserve connectivity

From now on, we shall assume that our voltage operations preserve connectivity

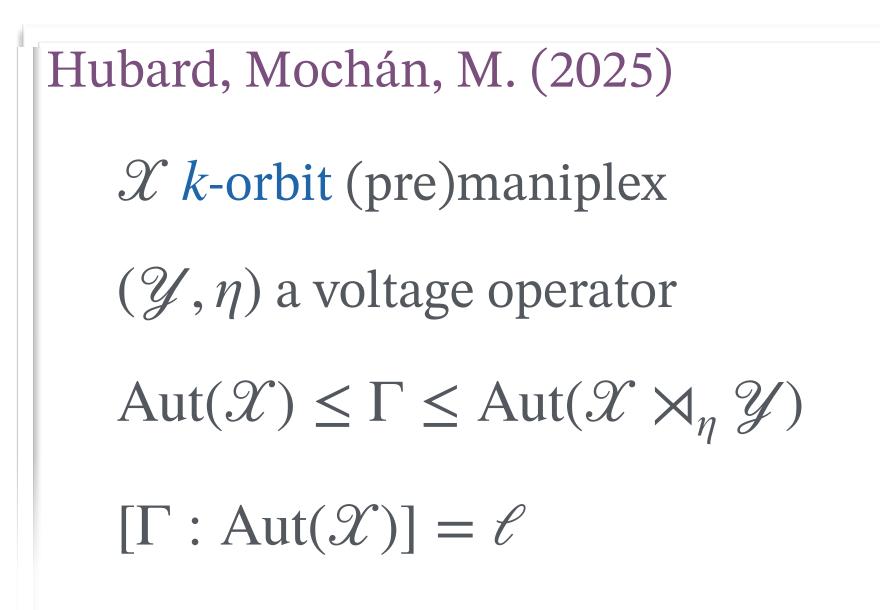


Cannonical (orientable) double cover

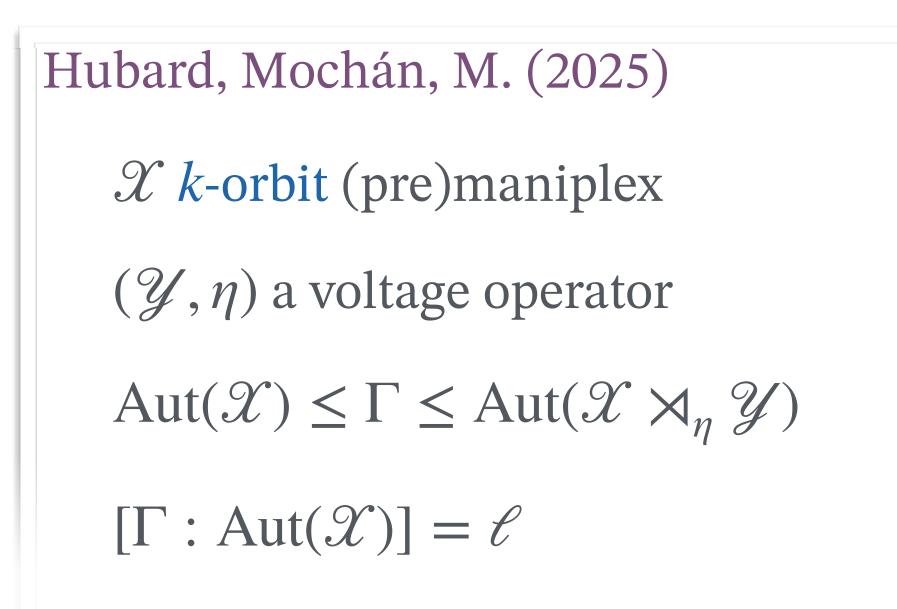
You'll need to wait for the next talk for this one

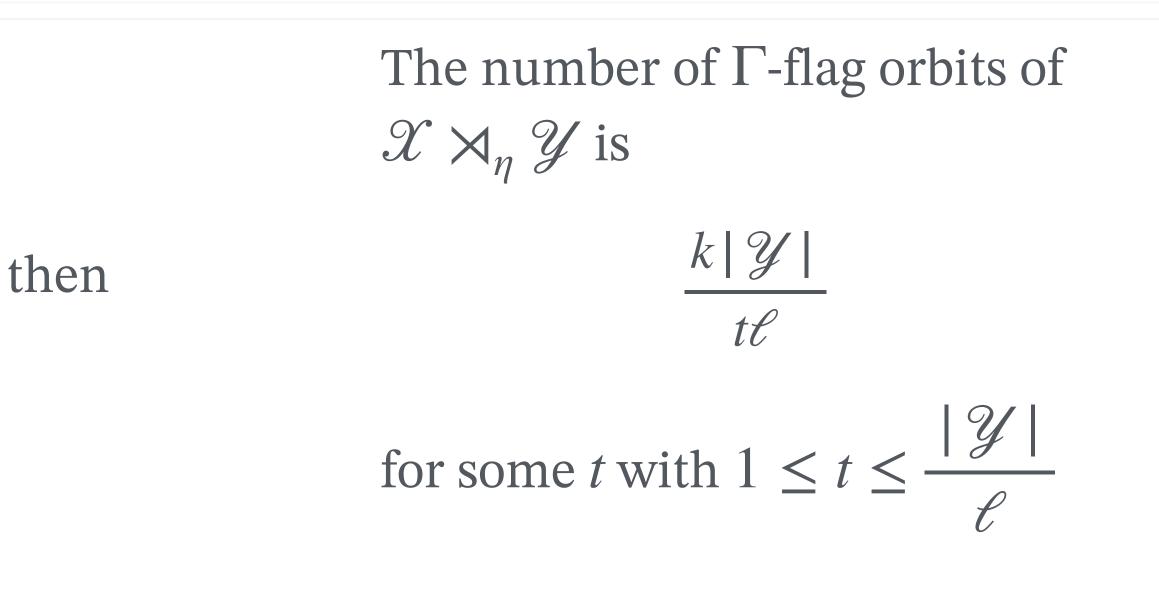
From now on, we shall assume that our voltage operations preserve connectivity

Hubard, Mochán, M. (2025)



then





```
Hubard, Mochán, M. (2025)

\mathscr{X} k-orbit (pre)maniplex

(\mathscr{Y}, \eta) a voltage operator

\operatorname{Aut}(\mathscr{X}) \leq \Gamma \leq \operatorname{Aut}(\mathscr{X} \rtimes_{\eta} \mathscr{Y})

[\Gamma : \operatorname{Aut}(\mathscr{X})] = \ell
```

The number of flag-orbits of the prism over an k-

The number of Γ -flag orbits of $\mathscr{X} \rtimes_{\eta} \mathscr{Y}$ is

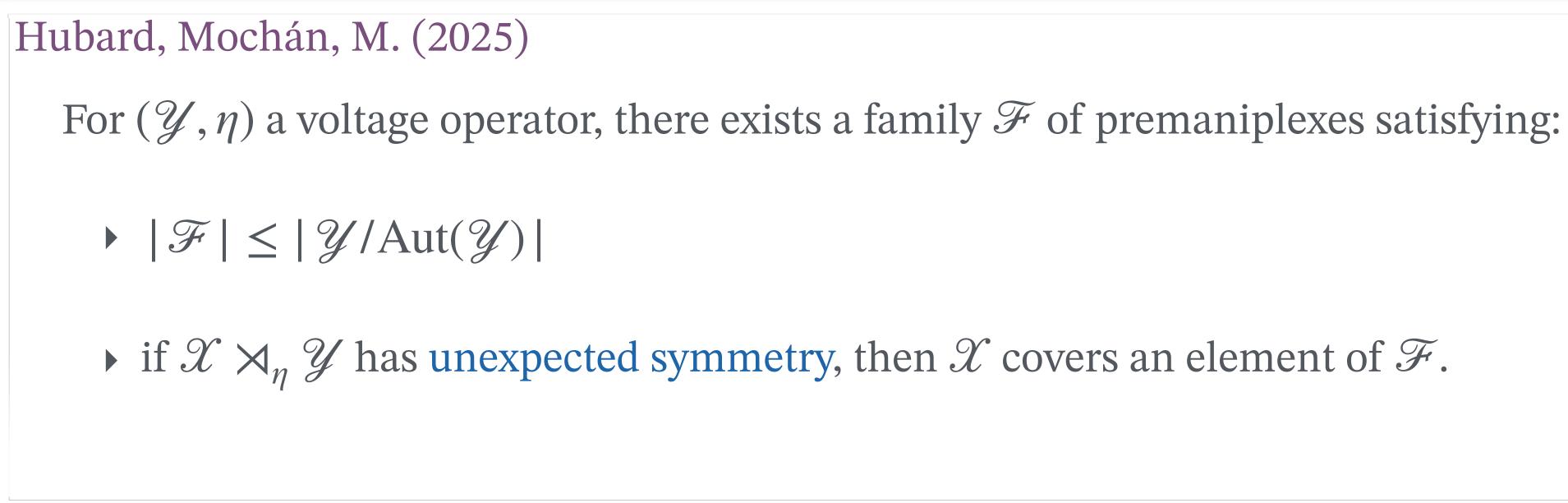
 $\frac{k|\mathcal{Y}|}{t\ell}$

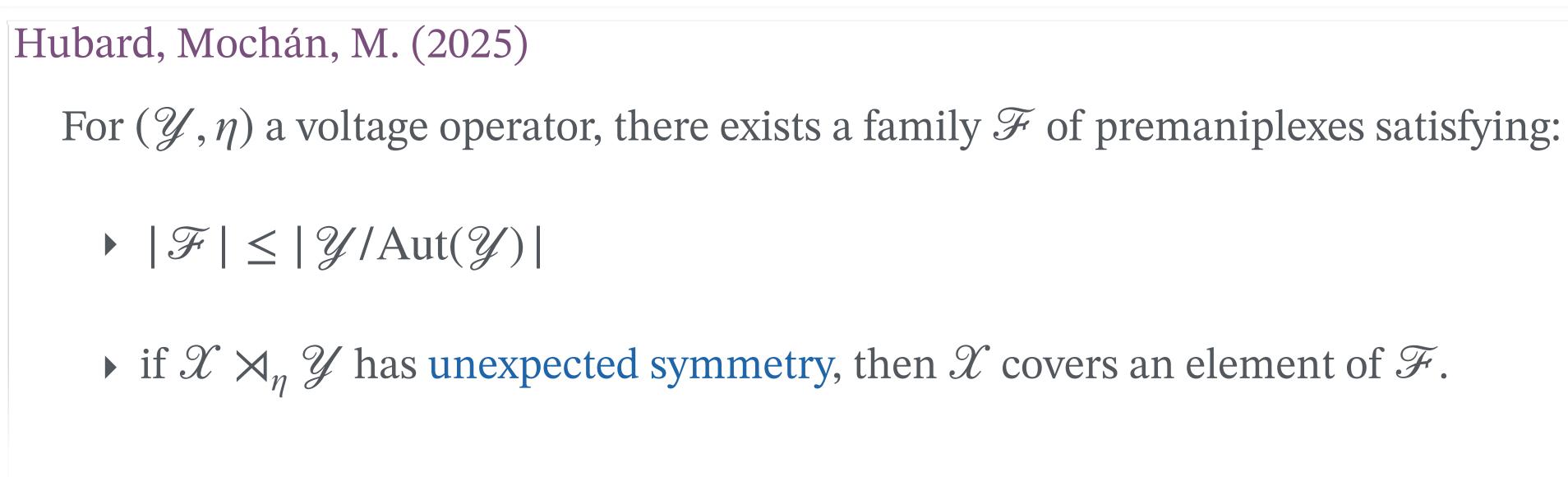
then

for some *t* with $1 \le t \le \frac{|\mathcal{Y}|}{\ell}$

-orbit n-maniplex is
$$\frac{k(n+1)}{t}$$
 for some $t \le n+1$

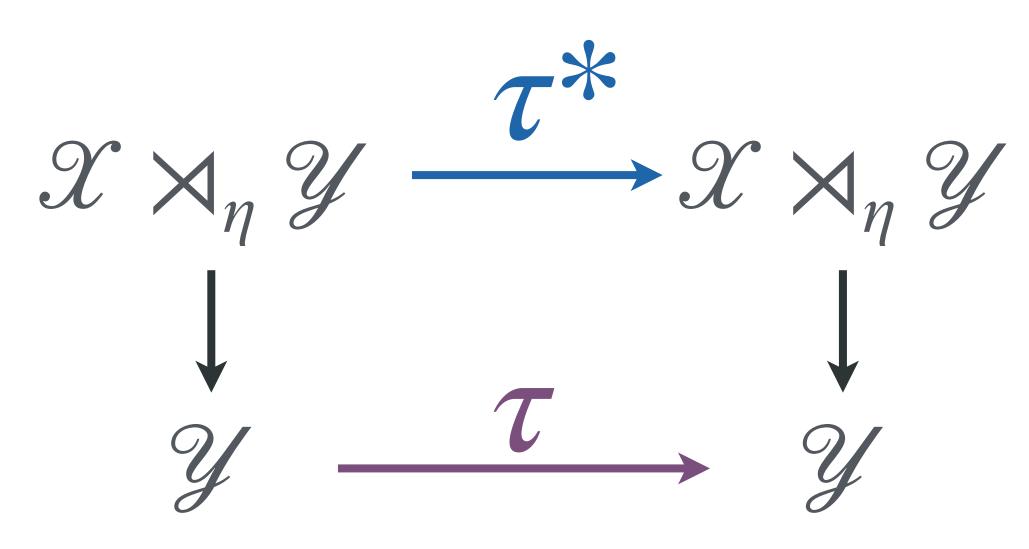
Hubard, Mochán, M. (2025)





Every non-trivial automorphism of \mathcal{Y} induces such a case.

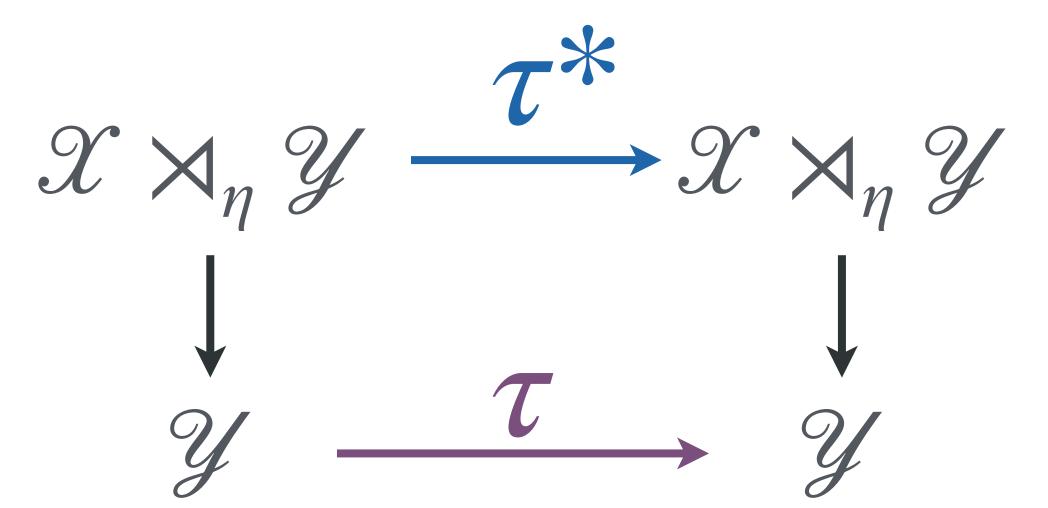
Can we understand those?

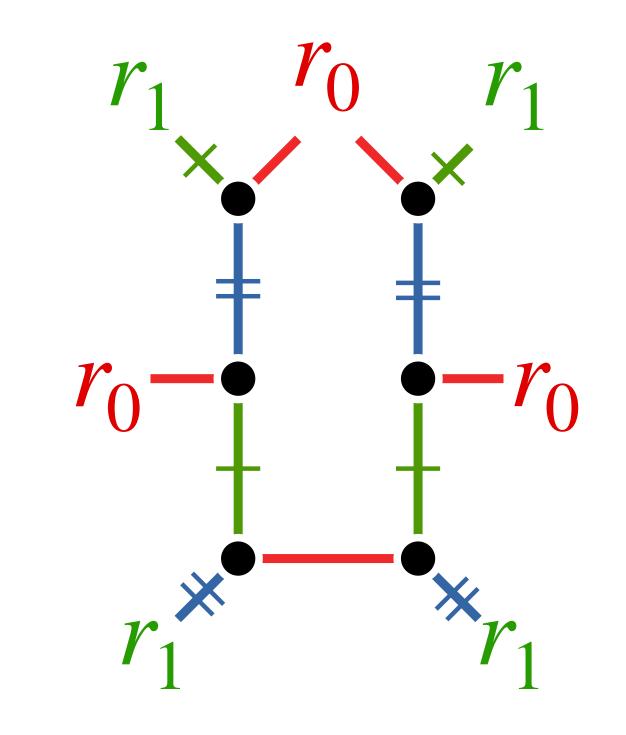


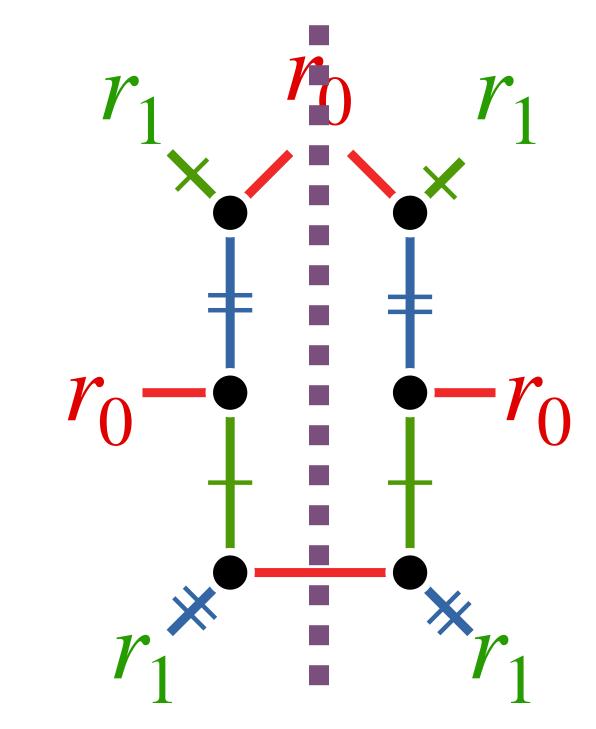


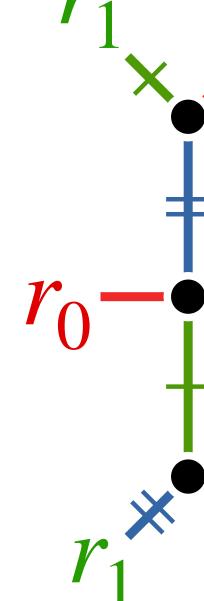
Hubard, Mochán, M. (2025)

The automorphisms of $\mathscr{X} \rtimes_n \mathscr{Y}$ that project to *id* are exactly those in Aut(\mathscr{X}).



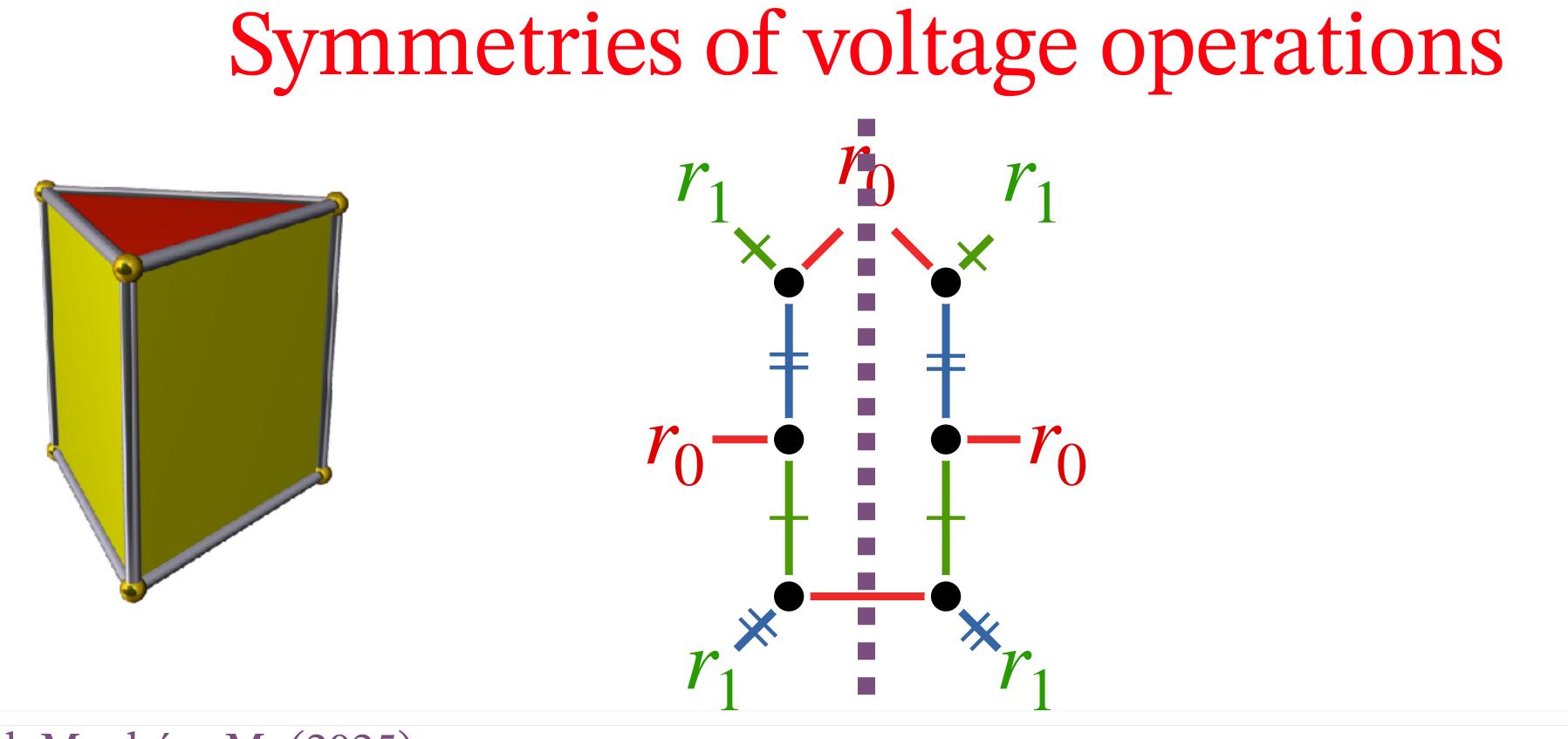






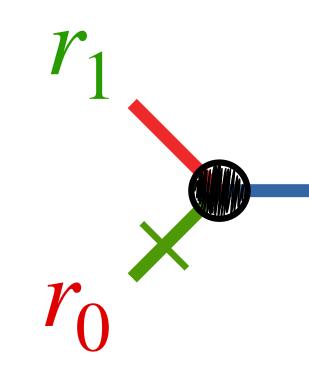
Hubard, Mochán, M. (2025)

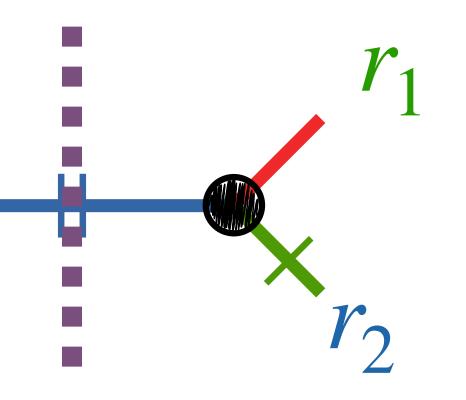
The group $\operatorname{Aut}(\mathcal{Y}, \eta) \leq \operatorname{Aut}(\mathcal{Y})$ of automorphisms of \mathcal{Y} that preserve η always lifts to $\mathscr{X} \rtimes_{\eta} \mathscr{Y}$ and induces a group isomorphic to $\operatorname{Aut}(\mathscr{X}) \times \operatorname{Aut}(\mathscr{Y}, \eta)$.

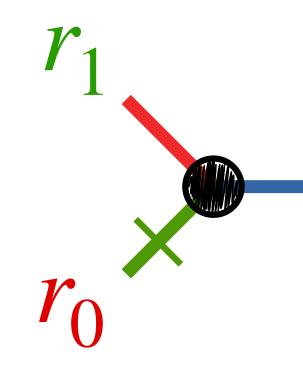


Hubard, Mochán, M. (2025)

The group Aut(\mathcal{Y}, η) \leq Aut(\mathcal{Y}) of automorphisms of \mathcal{Y} that preserve η always lifts to $\mathscr{X} \rtimes_{\eta} \mathscr{Y}$ and induces a group isomorphic to $\operatorname{Aut}(\mathscr{X}) \times \operatorname{Aut}(\mathscr{Y}, \eta)$.

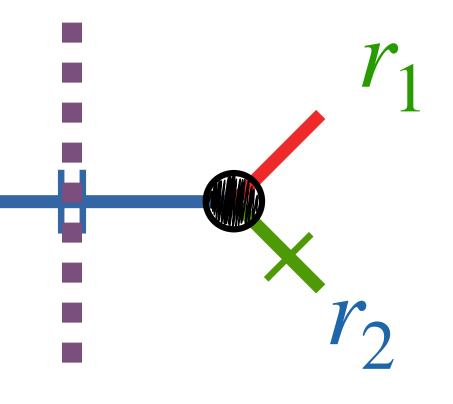


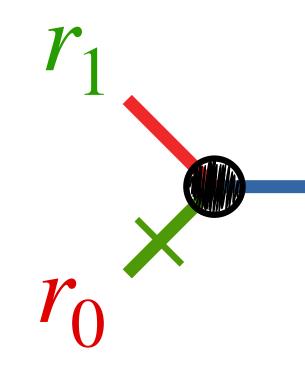




Hubard, Mochán, M. (2025)

• Such an automorphism τ induces a *d*-morphism $\tau^{\#}$.

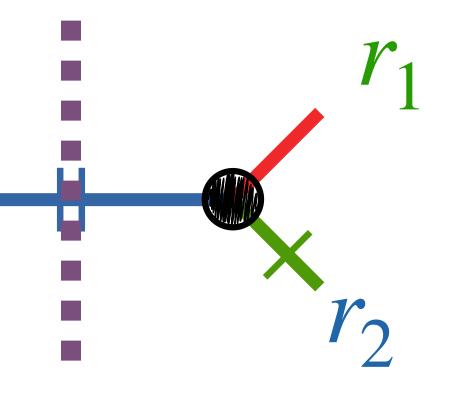


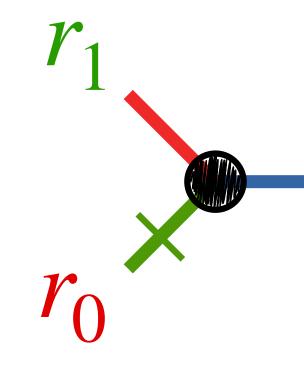


Hubard, Mochán, M. (2025)

• Such an automorphism τ induces a *d*-morphism $\tau^{\#}$.

•
$$\mathscr{X} \rtimes_{\eta} \mathscr{Y} \cong \mathscr{X}^{\tau^{\#}} \rtimes_{\eta} \mathscr{Y}.$$



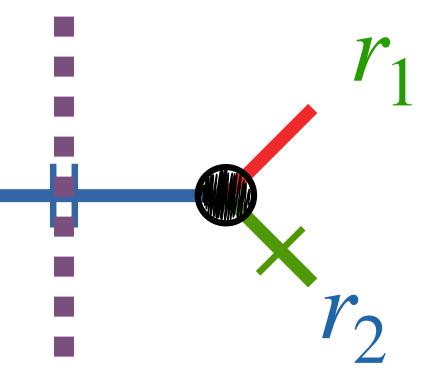


Hubard, Mochán, M. (2025)

• Such an automorphism τ induces a *d*-morphism $\tau^{\#}$.

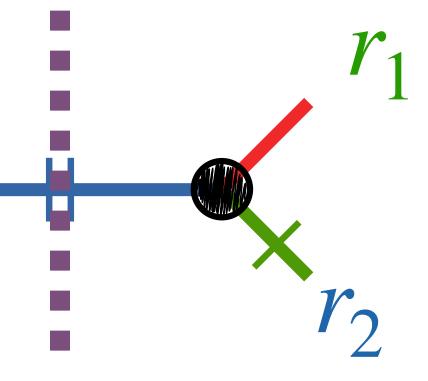
•
$$\mathscr{X} \rtimes_{\eta} \mathscr{Y} \cong \mathscr{X}^{\tau^{\#}} \rtimes_{\eta} \mathscr{Y}.$$

• If $\mathscr{X} \cong \mathscr{X}^{\tau^{\#}}$, then τ lifts an automorphism of $\mathscr{X} \rtimes_{\eta} \mathscr{Y}$.

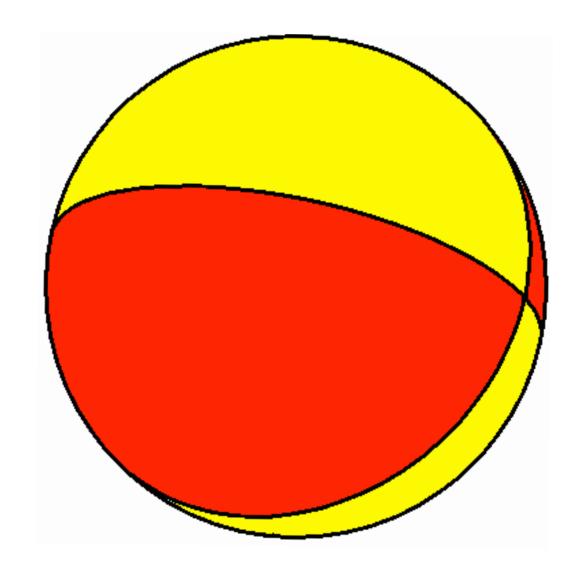


Hubard, Mochán, M. (2025)

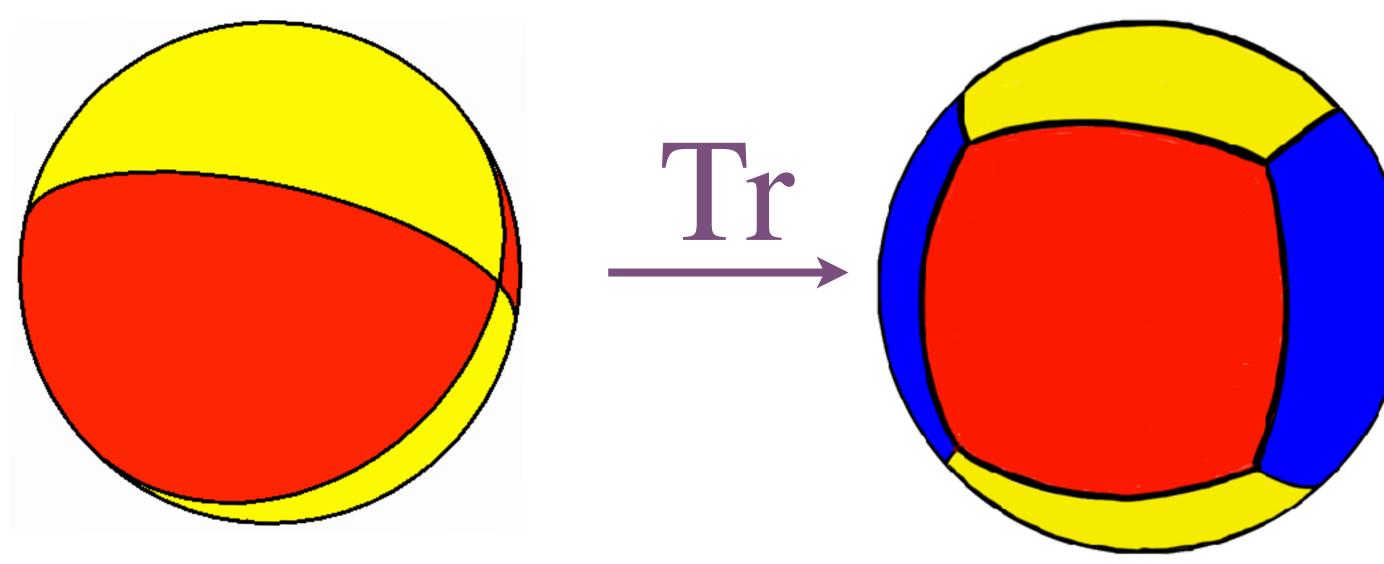
- Such an automorphism τ induces a *d*-morphism $\tau^{\#}$.
- $\mathscr{X} \rtimes_{\eta} \mathscr{Y} \cong \mathscr{X}^{\tau^{\#}} \rtimes_{\eta} \mathscr{Y}.$
- If $\mathscr{X} \cong \mathscr{X}^{\tau^{\#}}$, then τ lifts an automorphism of $\mathscr{X} \rtimes_{\eta} \mathscr{Y}$.
- If $\Gamma \leq \operatorname{Aut}(\mathscr{Y})$ is the group of such automorphisms, then Γ lifts to group $\tilde{\Gamma} \leq \operatorname{Aut}(\mathscr{X} \rtimes_n \mathscr{Y})$ that is a extension of $\operatorname{Aut}(\mathscr{X})$ by Γ



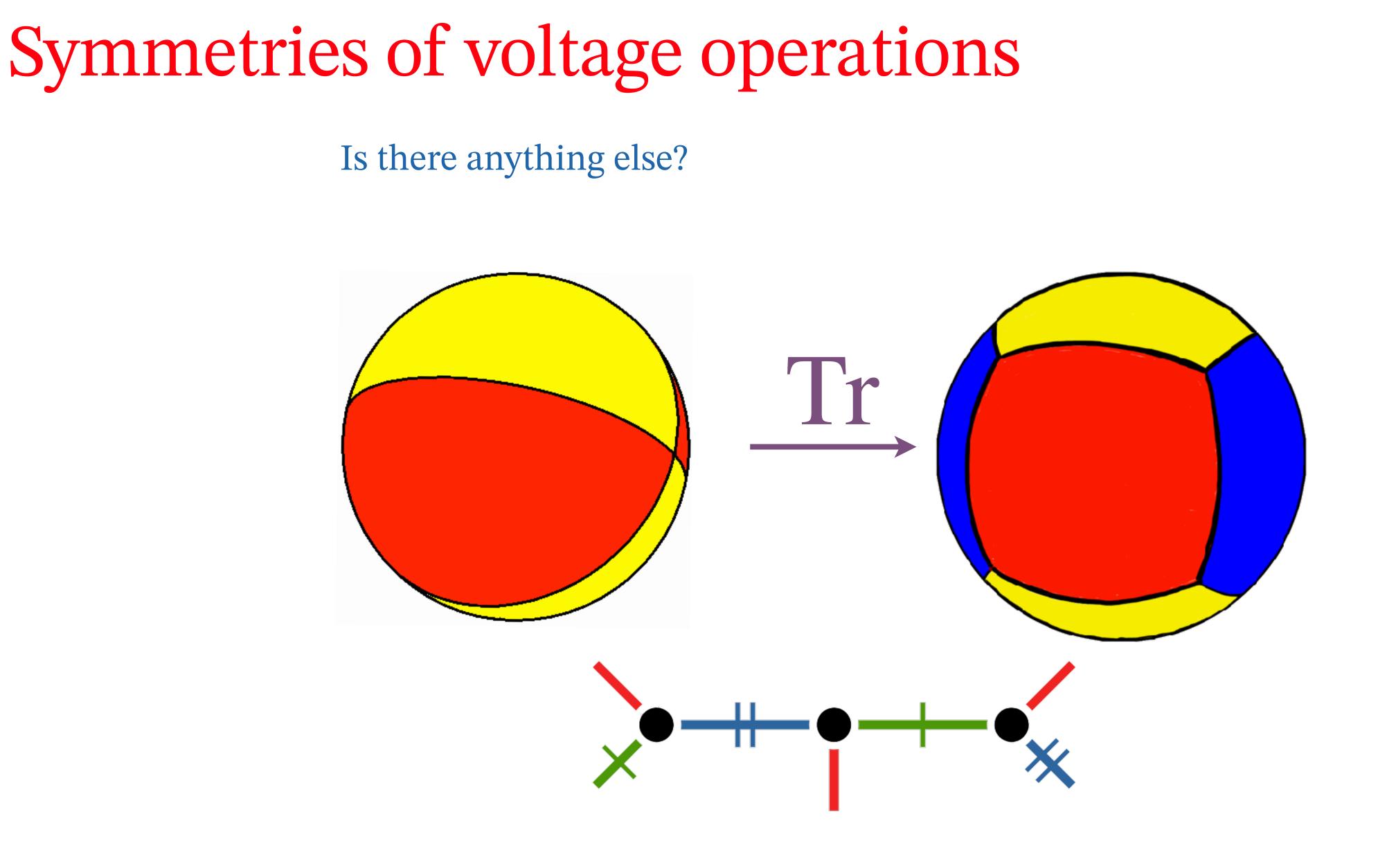
Is there anything else?

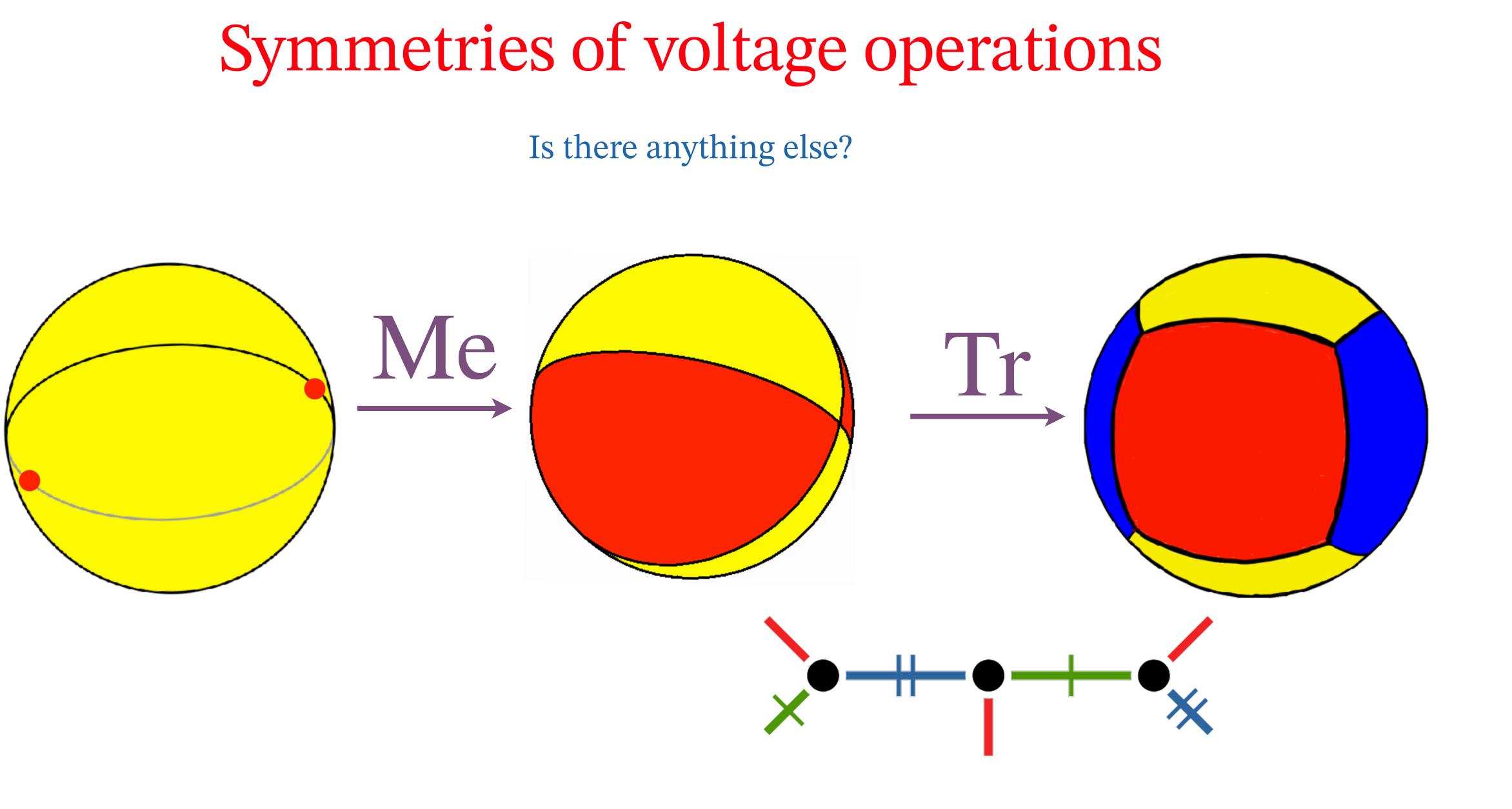


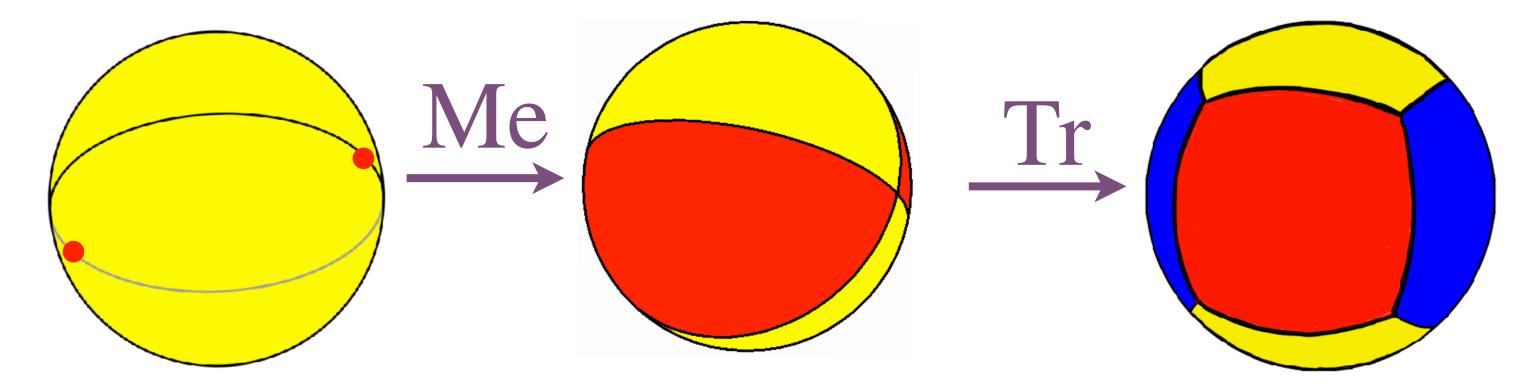
Is there anything else?

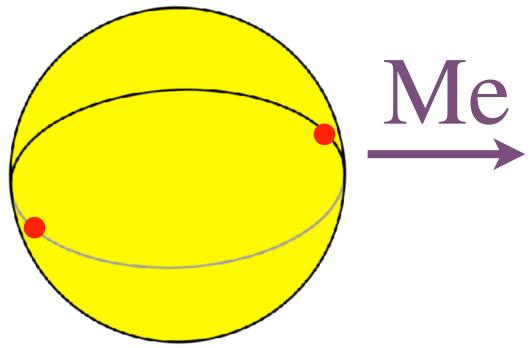


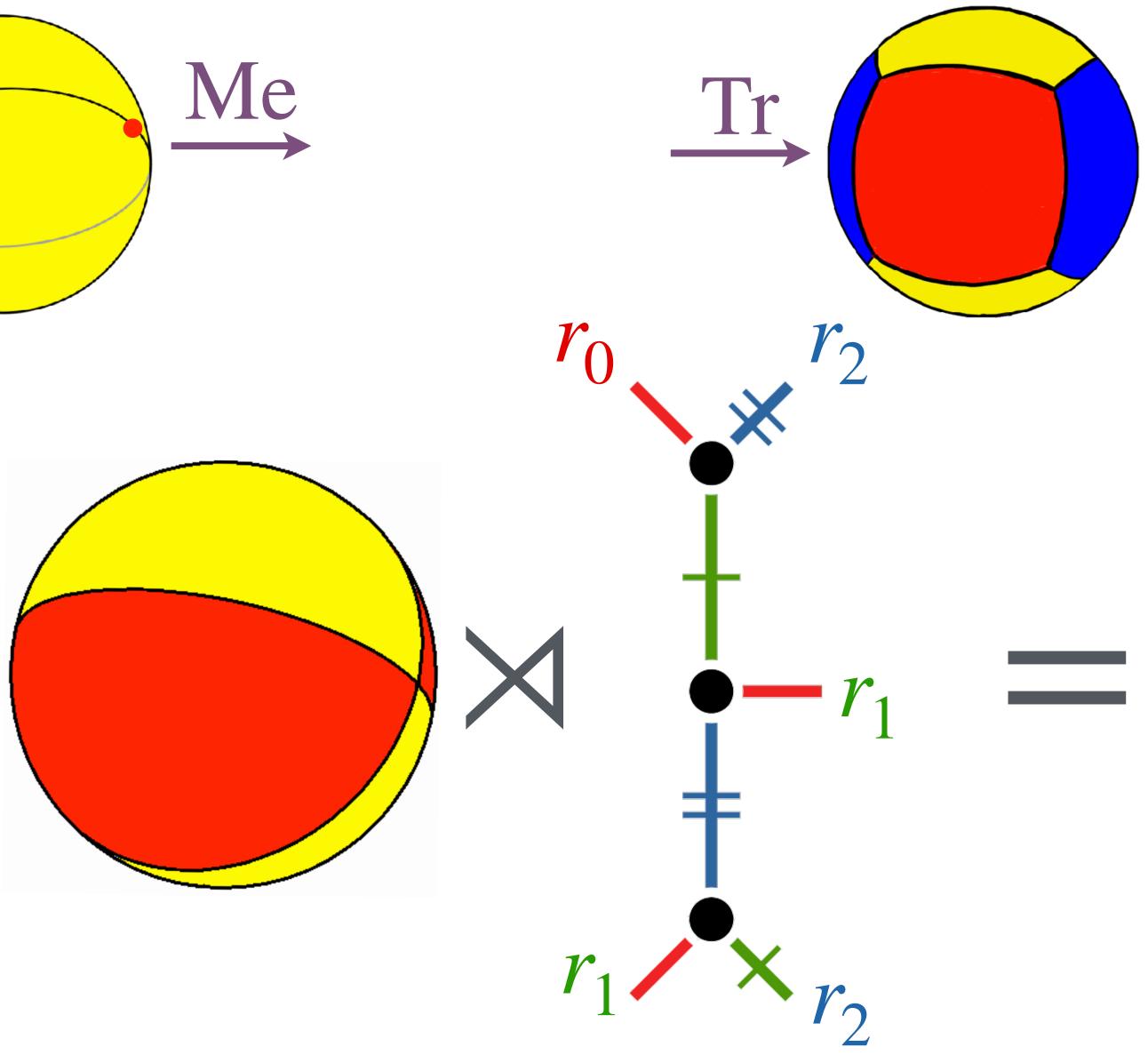
Is there anything else?

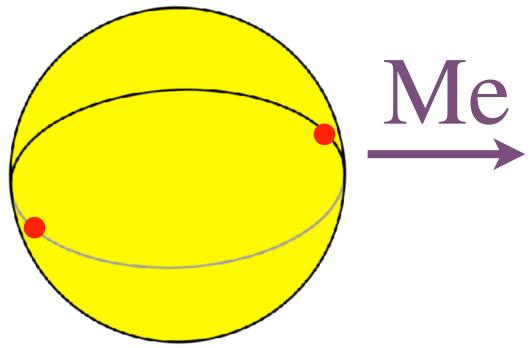


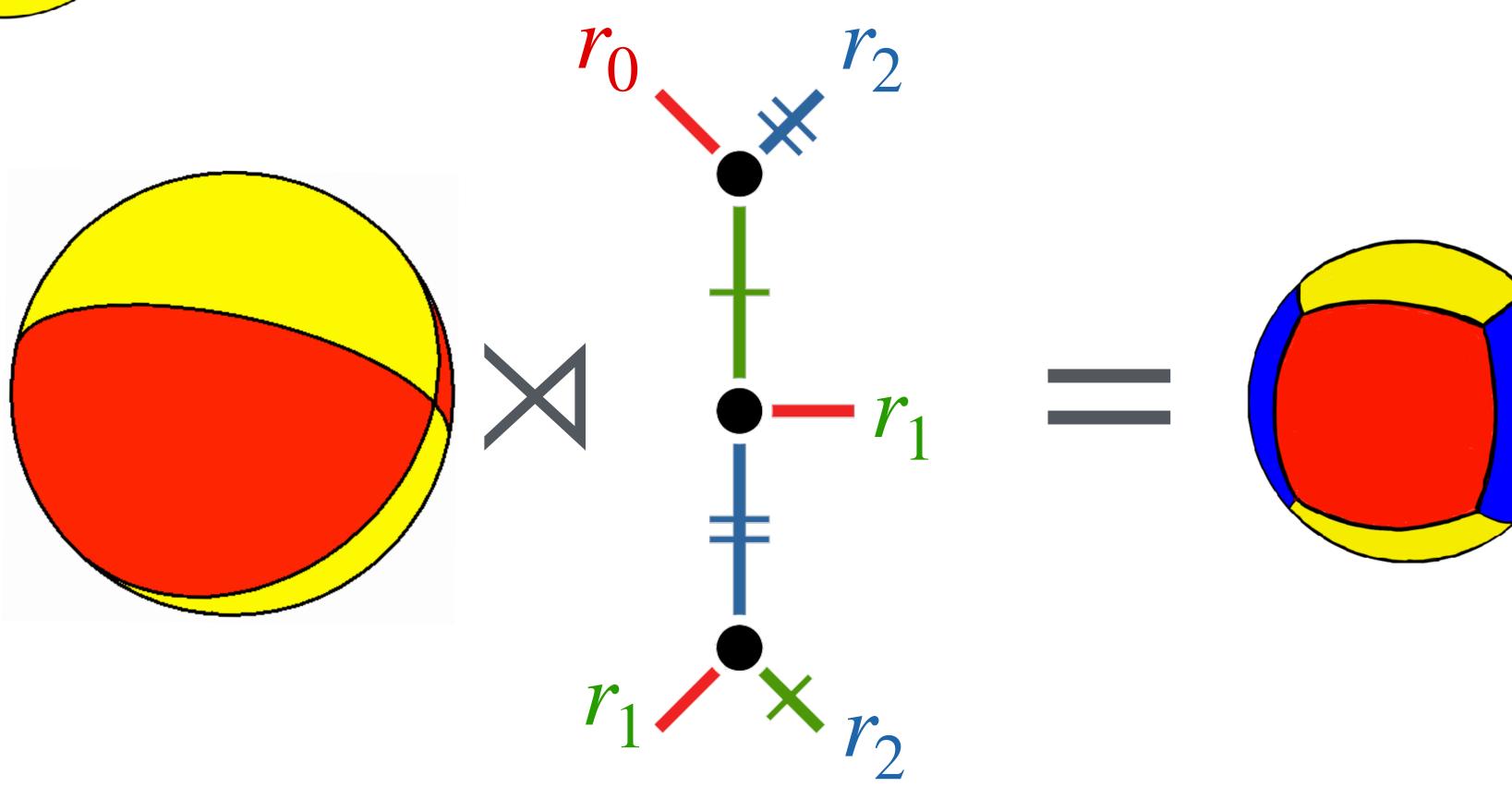


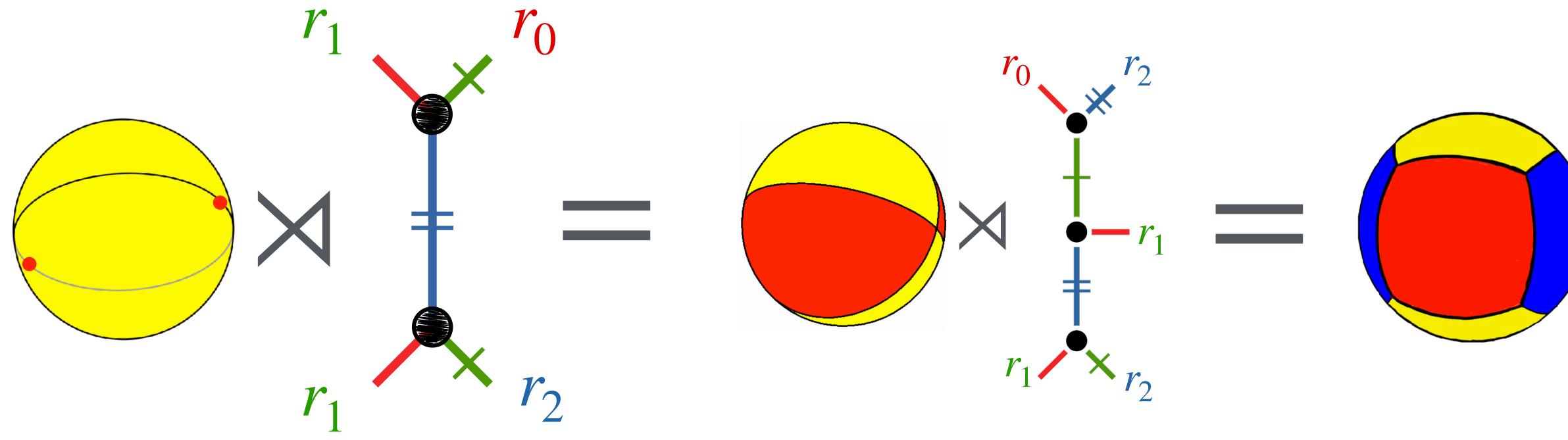


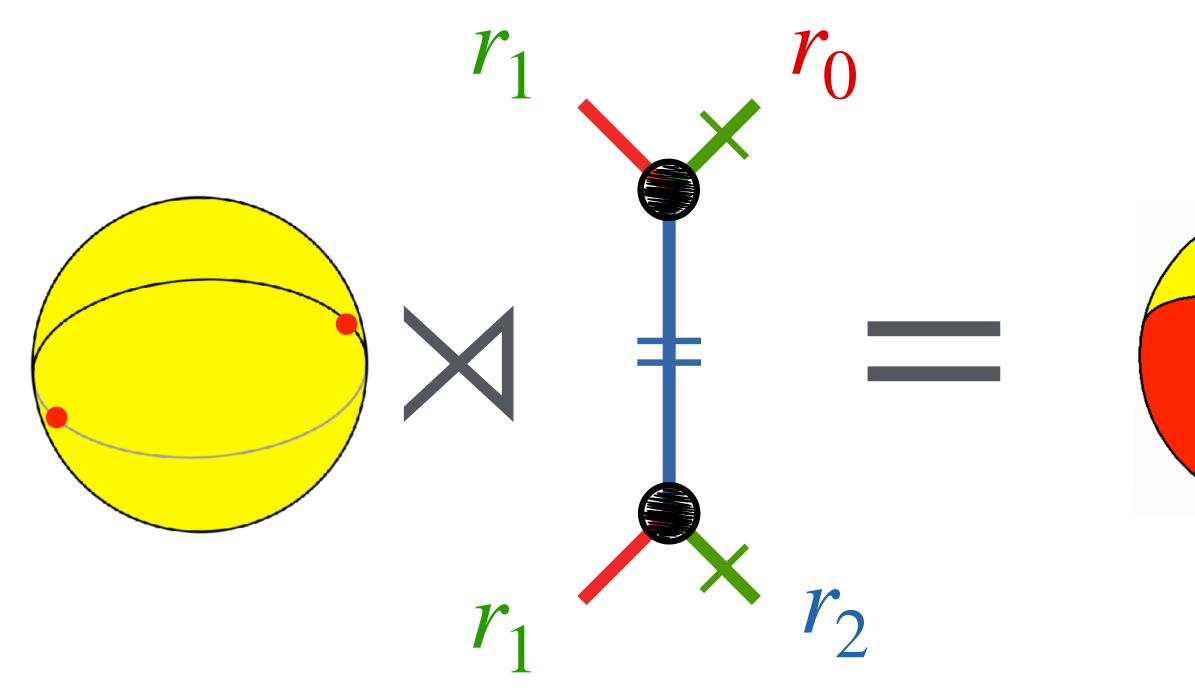


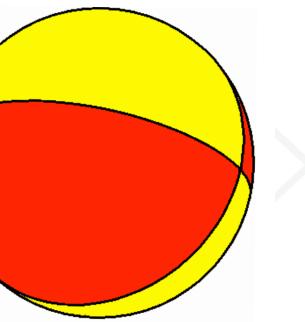


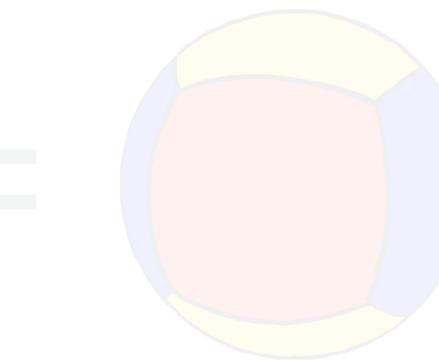


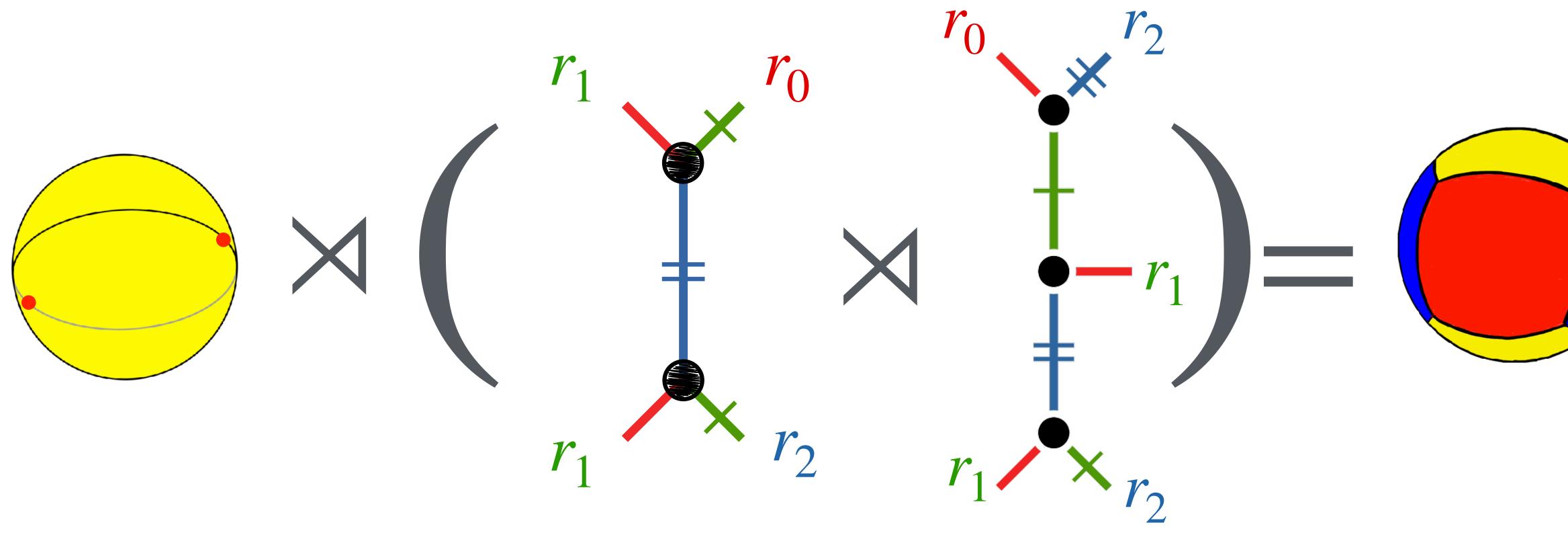


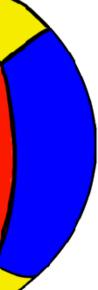




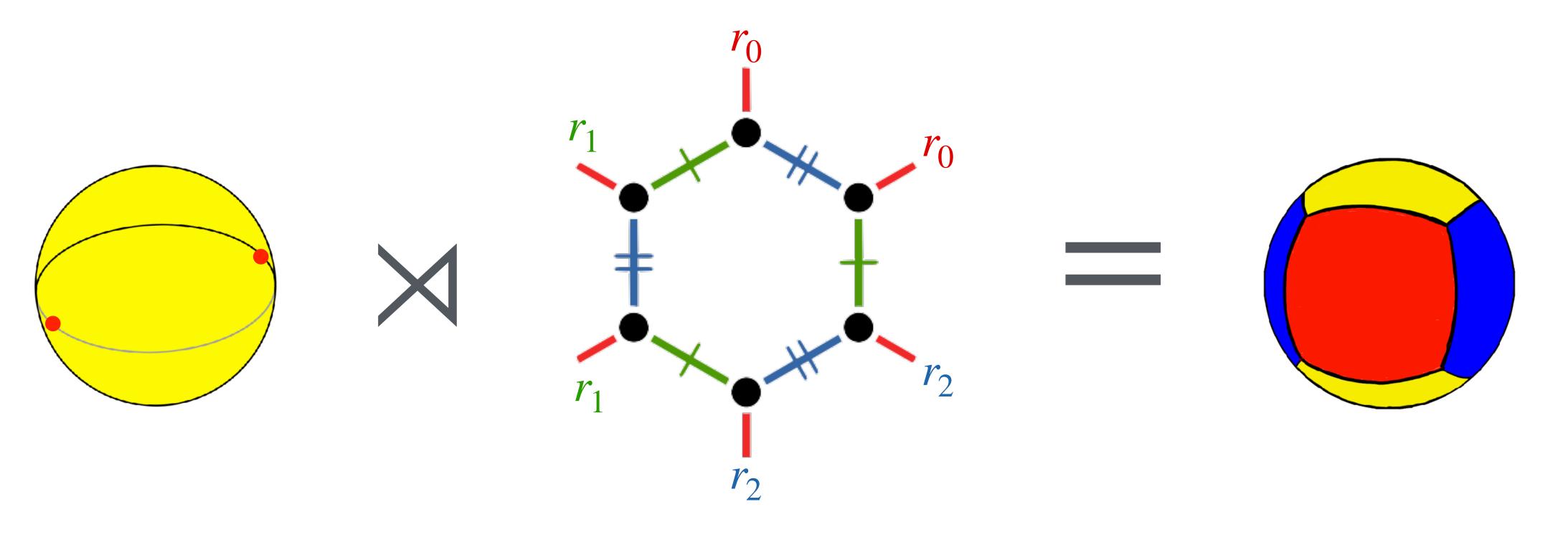






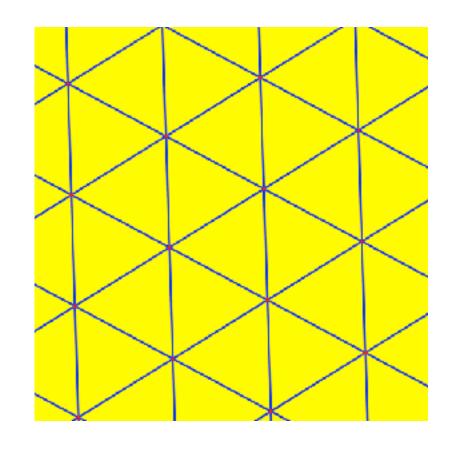




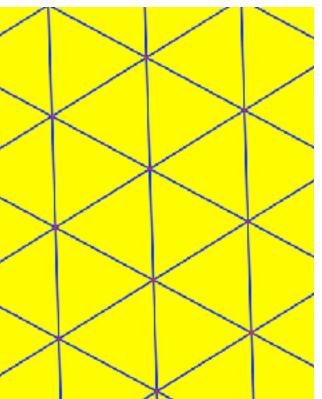


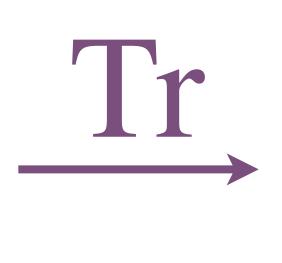
 $\operatorname{Aut}(\mathscr{Y}) = S_3$

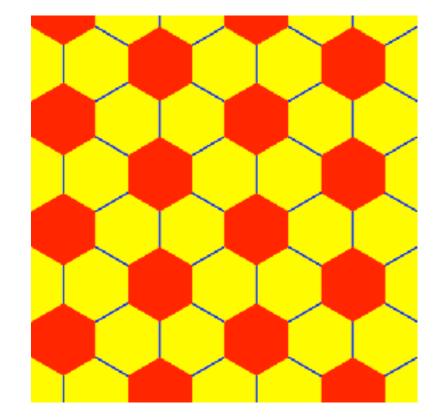
 $\operatorname{Aut}(\mathscr{X} \rtimes_{\eta} \mathscr{Y}) = \mathbb{Z}_2^3 \rtimes S_3$



{3,6}

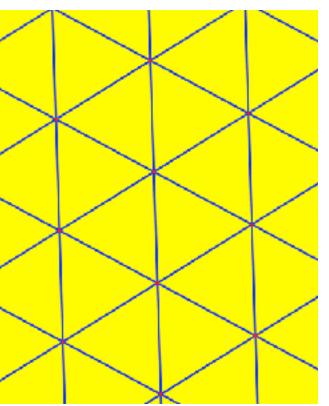


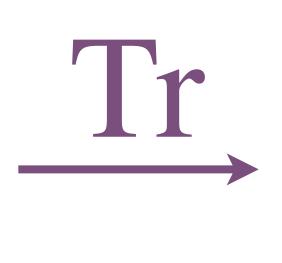


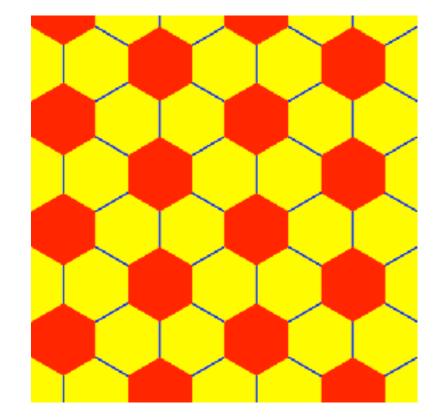


{3,6}

 $Tr{3,6} = {6,3}$

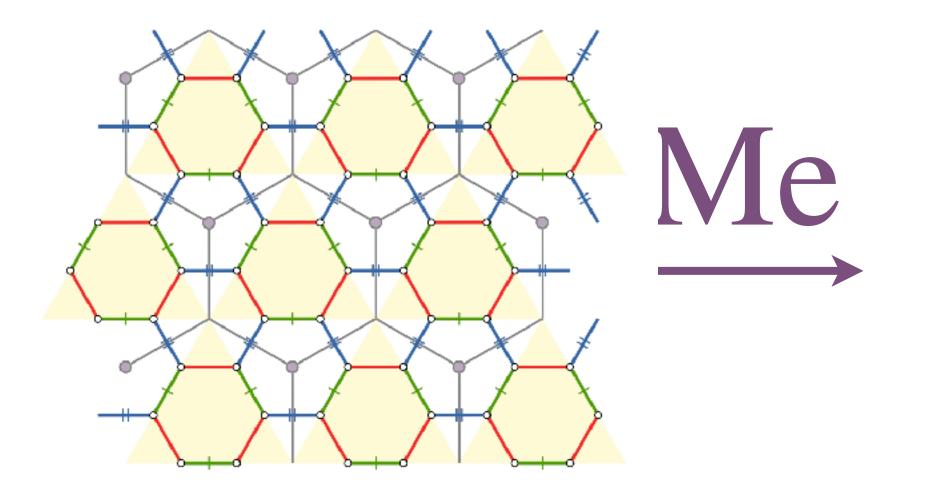




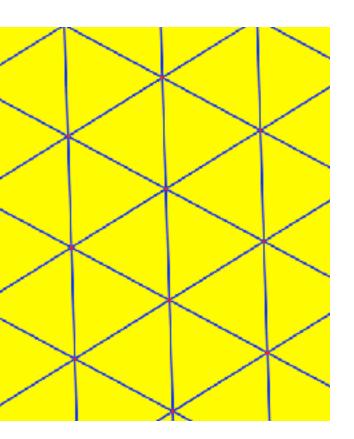


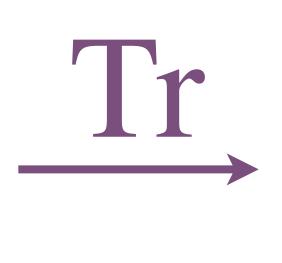
{3,6}

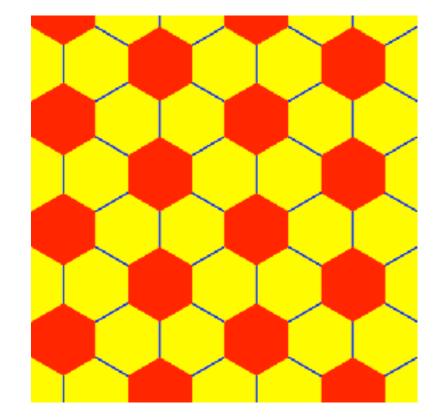
 $Tr{3,6} = {6,3}$



(3,3,3)







{3,6}

 $Tr{3,6} = {6,3}$

Conjecture

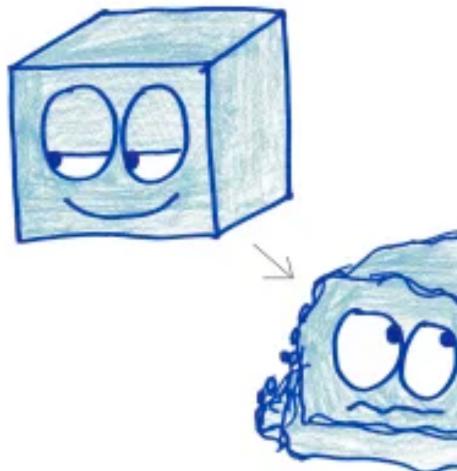
automorphisms of $\mathscr{X} \rtimes_n \mathscr{Y}$ are lifts of automorphisms of \mathscr{Y} .

Symmetries of voltage operations

If \mathscr{X} cannot be regarded as $\mathscr{X} \cong \mathscr{W} \rtimes_{\theta} \mathscr{Z}$ for some suitable choice of (\mathscr{Z}, θ) , then all the

Not a voltage operation:

PLATONIC SOLID



Thank you for your attention

