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Hubard, Garza-Vargas (2017): 
Abstract polytopes are faithful 
maniplexes that satisfy the PIC

Gabe might or might not have talked about this.
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Hartley,… (1999, …): 
Every n-maniplex is a quotient 
of . 𝒰n

𝒰n/M ↘ 𝒰n/N ⟺ M ≤ N
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The notions of cover and 
automorphism extend naturally 
from maniplexes to premaniplexes
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pre maniplexes 

Symmetry-type conjecture: 

 
Given a connected -premaniplex , 
there exists a -maniplex (polytope)  
such that 

n 𝒯
n ℳ

STG(ℳ) = 𝒯
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Fig. 2 Premaniplexes with 1 and 2 vertices

and (Y, η) is a fixed voltage operator, is a voltage operation (or an (n,m)-voltage
operation).

Given premaniplexesX andY and a voltage assignment η, we shall see thatX !ηY
is not only a properly m-edge-colored graph, but an m-premaniplex itself, although it
need not be a maniplex (even if X and/or Y are maniplexes). Before showing this, we
give some straightforward examples of voltage operations.

Let us denote by 1n the symmetry type graph of a regular n-maniplex. That is, the
premaniplex with only one vertex and n semiedges (see Fig. 2A). Moreover, if G is a
group and η : 1n ! G is a voltage assignment that assigns gi to the semiedge of color
i , then we denote this voltage graph by (1n, [g0, . . . , gn−1]).
Example 3.1 The concept of a d-automorphism of a polytope is defined in [16], and
can be generalized to maniplexes in a straightforward way. Let M be an n-maniplex
and consider Mon(Un) = 〈r0, r1, . . . , rn−1〉 and d an automorphism of Mon(Un). We
shall keep the vertices of M and the action of Mon(Un) on them, but we choose a
new set of labeled generators of the same permutation group acting on the same set
of flags to obtain a new maniplex, Md . More precisely, the maniplex Md is defined
as follows: the vertices ofMd are the vertices ofM and given a vertex x , the dart of
color i starting at x ends at d(ri )x . In other words, inMd , xi = d(ri )x . IfM ∼= Md ,
we call each isomorphism ϕ : M ! Md a d-automorphism of M, and we say that
M is d-automorphic.

The maniplex Md can easily be seen as an (n, n)-voltage operation:

if (Y, η) = (1n, [d(r0), d(r1) . . . , d(rn−1)]), then M !η Y = Md .

Classical examples of the above operation are the dual and the Petrial of an n-maniplex
X :

123
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X :
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A k-orbit map is a map with k flag-orbits under the action of
its automorphism group. We give a basic theory of k-orbit maps
and classify them up to k ! 4. “Hurwitz-like” upper bounds for
the cardinality of the automorphism groups of 2-orbit and 3-orbit
maps on surfaces are given. Furthermore, we consider effects of
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1. Introduction

A map, as defined in Section 2, is essentially a tiling of a compact closed surface. In this paper
we explore some basic properties of highly symmetric maps and in particular those which are not
regular.

The barycentric subdivision of a map produces a set of triangles which we call flags. When the
symmetry (automorphism) group of the map is transitive on the flags we say that the map is regular,
or 1-orbit map. Furthermore, if the symmetry group of a map is transitive on the vertices, edges or
faces we say that the map is vertex-, edge-, or face-transitive, respectively.

While regular and chiral maps have been studied extensively [5,6,21–23] very little work has been
done on other symmetric maps, with the notable exception of edge-transitive maps [18,20].

In Section 2 we define the concept of k-orbit map as a map that has k distinct orbits of flags under
the action of its automorphism group. For example, chiral maps are examples of 2-orbit maps. Clearly,
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ℳ⋄
You’ll need to wait for the next talk for this one

Cannonical (orientable) double cover
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 -orbit (pre)maniplex𝒳 k

 a voltage operator(𝒴, η)

Aut(𝒳) ≤ Γ ≤ Aut(𝒳 ⋊η 𝒴)

[Γ : Aut(𝒳)] = ℓ

then

The number of -flag orbits of 
 is

Γ
𝒳 ⋊η 𝒴

k |𝒴 |
tℓ

for some  with t 1 ≤ t ≤
|𝒴 |

ℓ

The number of flag-orbits of the prism over an -orbit n-maniplex is  for some k
k(n + 1)

t
t ≤ n + 1
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For  a voltage operator, there exists a family  of premaniplexes satisfying:(𝒴, η) ℱ

‣ |ℱ | ≤ |𝒴/Aut(𝒴) |

‣ if  has unexpected symmetry, then  covers an element of .𝒳 ⋊η 𝒴 𝒳 ℱ

It is not uncommon that 

Combinatorica

Fig. 1 A (4, 3)-voltage operation. The edges in red, green, blue and purple represent 0-, 1-, 2- and 3-
adjacencies, respectively, as indicated by the number of markings

(a) The premaniplex 1n

i !∈ I

i ∈ I i ∈ I

(b) The premaniplex 2n
I

Fig. 2 Premaniplexes with 1 and 2 vertices

and (Y, η) is a fixed voltage operator, is a voltage operation (or an (n,m)-voltage
operation).

Given premaniplexesX andY and a voltage assignment η, we shall see thatX !ηY
is not only a properly m-edge-colored graph, but an m-premaniplex itself, although it
need not be a maniplex (even if X and/or Y are maniplexes). Before showing this, we
give some straightforward examples of voltage operations.

Let us denote by 1n the symmetry type graph of a regular n-maniplex. That is, the
premaniplex with only one vertex and n semiedges (see Fig. 2A). Moreover, if G is a
group and η : 1n ! G is a voltage assignment that assigns gi to the semiedge of color
i , then we denote this voltage graph by (1n, [g0, . . . , gn−1]).
Example 3.1 The concept of a d-automorphism of a polytope is defined in [16], and
can be generalized to maniplexes in a straightforward way. Let M be an n-maniplex
and consider Mon(Un) = 〈r0, r1, . . . , rn−1〉 and d an automorphism of Mon(Un). We
shall keep the vertices of M and the action of Mon(Un) on them, but we choose a
new set of labeled generators of the same permutation group acting on the same set
of flags to obtain a new maniplex, Md . More precisely, the maniplex Md is defined
as follows: the vertices ofMd are the vertices ofM and given a vertex x , the dart of
color i starting at x ends at d(ri )x . In other words, inMd , xi = d(ri )x . IfM ∼= Md ,
we call each isomorphism ϕ : M ! Md a d-automorphism of M, and we say that
M is d-automorphic.

The maniplex Md can easily be seen as an (n, n)-voltage operation:

if (Y, η) = (1n, [d(r0), d(r1) . . . , d(rn−1)]), then M !η Y = Md .

Classical examples of the above operation are the dual and the Petrial of an n-maniplex
X :

123

∈ ℱ Every non-trivial automorphism of  
induces such a case.

𝒴

Can we understand those?
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𝒳 ⋊η 𝒴 𝒳 ⋊η 𝒴

𝒴𝒴 τ
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• Such an automorphism  induces a -morphism .τ d τ#

• .𝒳 ⋊η 𝒴 ≅ 𝒳τ# ⋊η 𝒴

• If , then  lifts an automorphism of .𝒳 ≅ 𝒳τ# τ 𝒳 ⋊η 𝒴
• If  is the group of such automorphisms, then  lifts to group

 that is a extension of  by 

Γ ≤ Aut(𝒴) Γ
Γ̃ ≤ Aut(𝒳 ⋊η 𝒴) Aut(𝒳) Γ

r1r1

r2r0
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Aut(𝒳) = ℤ3
2 Aut(𝒴) = S3 Aut(𝒳 ⋊η 𝒴) = ℤ3

2 ⋊ S3
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TrMe

{3,6} Tr{3,6} = {6,3}(3,3,3)
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Conjecture 

If  cannot be regarded as  for some suitable choice of , then all the 
automorphisms of  are lifts of automorphisms of .

𝒳 𝒳 ≅ 𝒲 ⋊θ 𝒵 (𝒵, θ)
𝒳 ⋊η 𝒴 𝒴



Not a voltage operation:

Thank you for your attention


