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What if Γ is Vertex Transitive?
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supp(x) = {α ∈ : αx ≠ α}

The support  of an automorphism  of a graph 
 is the subset of vertices of  moved by 

supp(x) x
Γ Γ x

VΓ



The motion  of a graph  is the minimum number 
of vertices moved by a non-trivial automorphism:

μ(Γ) Γ

supp(x) = {α ∈ : αx ≠ α}

The support  of an automorphism  of a graph 
 is the subset of vertices of  moved by 

supp(x) x
Γ Γ x

VΓ

μ( ) = min {|supp(x) | : x ∈Aut(Γ)Γ }



The motion  of a graph  is the minimum value 
of vertices moved by a non-trivial automorphism:

μ(Γ) Γ

supp(x) = {α ∈ : αx ≠ α}

The support  of a permutation  of a set  is 
the subset of points in  moved by 

supp(x) x Ω
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The mininimal degree  of a permutation group 
 is the minimum number of points moved by a 

non-trivial element of :

μ(G)
G ≤ Sym(Ω)

G

μ( ) = min {|supp(x) | : x ∈G G }

The support  of a permutation  of a set  is 
the subset of points in  moved by 

supp(x) x Ω
Ω x

supp(x) = {α ∈ : αx ≠ α}Ω
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Determine the primitive permutation groups  
with 

G ≤ Sym(Ω)
μ(G) = k

Theorem (Jordan, 1871) 

If  is primitive and contains a -cycle for 
some prime  then . 
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Determine the primitive permutation groups  
with 

G ≤ Sym(Ω)
μ(G) = k

Theorem (Jones, 2014) 

If  is primitive and contains a -cycle for 
some then  or  belongs to a list of 
well-known groups. 
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k ≤ |Ω | Alt(Ω) ≤ G G
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Determine the primitive permutation groups  
with 

G ≤ Sym(Ω)
μ(G) = k

Herzog, Praeger (1976) - Minimal degree of PPG  

Liebeck, (1984) - On minimal degrees and base sizes of PPG 

Liebeck, Saxl (1991) - Min Deg of PPG with an application to monodromy groups of covers of Riemann 

Surfaces. 

Saxl, Shalev (1995) - The fixity of permutation groups. 

Guralnick, Magaard (1998) - On the minimal degree of a PPG. 

Lawther, Liebeck, Seitz (2014) - Fixed point rations in action of finite exceptional groups of Lie type. 

Liebeck, Shalev (2015) - On fixed points of elements in PPG. 

Burness, Guralnick. (2022) - Fixed point ratios for finite primitive groups and applications.

The groups problem



Determine the primitive permutation groups  
with 

G ≤ Sym(Ω)
μ(G) = k

The groups problem



The groups problem The graphs problem

Classify the vertex 
transitive graphs  with Γ

μ(Γ) = k

Determine the transitive 
permutation groups 

 with G ≤ Sym(Ω) μ(G) = k



The graphs problem

Classify the vertex 
transitive graphs  with Γ

μ(Γ) = k



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Conder, Tucker (2011) - Motion and distinguishing number two. 



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Lehner, Potocnik, Spiga (2021) - On fixity of arc-transitive 
graphs.

ˇ

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ

Barbieri, Grazian, Spiga (2023) - On the number of fixed edges 
of automorphisms of vertex-transitive graphs of small valency.

Conder, Tucker (2011) - Motion and distinguishing number two. 



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ

Theorem. If  is connected, vertex- and edge- transitive 4-

valent graph s.t. , then  is arc-transitive and

Γ

μ(Γ) <
2 |VΓ |

3
Γ



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ

Theorem. If  is connected, vertex- and edge- transitive 4-

valent graph s.t. , then  is arc-transitive and

Γ

μ(Γ) <
2 |VΓ |

3
Γ

 is one of six exceptions; orΓ



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ

Theorem. If  is connected, vertex- and edge- transitive 4-

valent graph s.t. , then  is arc-transitive and

Γ

μ(Γ) <
2 |VΓ |

3
Γ

 is one of six exceptions; orΓ
 is isomorphic to a Praeger-Xu graph  with 

 and 
Γ PX(r, s)
1 ≤ s ≤ 2r/3 r ≥ 3



The graphs problem

Classify the vertex transitive graphs  with Γ μ(Γ) = k

Potocnik, Spiga (2021) - On the number of fixed points of 
automorphisms of vertex-transitive graphs.

ˇ

Theorem. If  is connected, cubic vertex-transitive graph s.t. 

, then 

 is one of six exceptions; or 
 is isomorphic to a split Praeger-Xu graph  

with  and 

Γ

μ(Γ) <
2 |VΓ |

3
Γ
Γ SPX(r, s)

1 ≤ s ≤ 2r/3 r ≥ 3
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The graphs problem

Theorem: Potocnik, M. 

Let  be a vertex transitive graph with , then  

If  … 
If  is an odd prime number… 
If  …

Γ μ(Γ) = k

k = 2
k
k = 4

ˇ
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Aut( ) wr Aut( ) ≤ Aut( ≀ )Δ Θ Δ Θ
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Theorem (Potocnik, M.)

Let  be a vertex - transitive graph and  and odd prime. If 
 contains a -cycle, then.

Γ p
Aut(Γ) p

    ; Γ ≅ Km ≀ Θ
    ;Γ ≅ (mK1) ≀ Θ
    ;Γ ≅ Σp ≀ Θ

for some ,  a vertex-transitive graph and  a circulant 
graph with  vertices.

m ≥ 2 Θ Σp
p

ˇ

There are no VT graphs  
with  for an odd 
prime .

Γ
μ(Γ) = p

p
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, then  

  

for some , , , , and 
 …

Γ

μ(Γ) = 4

Γ ≅

Σ 𝒫 λ κ
m ≥ 2

ˇ
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Theorem (Potocnik, M.) 

Let  be a vertex - transitive graph with , then  

    ,  a vertex-transitive graph; 
    ,  a vertex-transitive graph, , 
    ,  a vertex-transitive graph, . 

, for some , , ,  and . 

Γ μ(Γ) = 4

Γ ≅ C5 ≀ Θ Θ
Γ ≅ (Km □ K2) ≀ Θ Θ m ≥ 3
Γ ≅ (Km □ K2) ≀ Θ Θ m ≥ 3
Γ ≅ Infλ

κ(Σ, 𝒫, m) Σ 𝒫 λ κ m ≥ 2

ˇ



Thank you!


