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Abstract polytopes

Abstract polytopes are combinatorial objects that generalise
geometric objects such as

* Convex polytopes.

* Maps on surfaces.

* Tessellations of En and Hn .
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Abstract polytopes
An abstract n-polytope P is a partially ordered set that
satisfies:

* P has a maximum and a
minimum.

* Every maximal chain of
P has n + 2 elements.

* P satisfies the diamond
condition.

* P is strongly
connected.
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Abstract polytopes
Symmetries

* An automorphism of an abstract polytope P is an
order-preserving bijection γ : P → P .

* The group Aut(P) of automorphisms of P acts freely on
the set of maximal chains.

* An abstract polytope is regular if the action of Aut(P)
on the maximal chains is transitive.
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Abstract polytopes
Given a fixed base maximal chain Φ,

* For every i ∈ {1, . . . , n− 1} there is an automorphism ρi s.t.

Φρi = Φi

.

* The automorphisms ρ0, ρ1, . . . , ρn−1 satisfy
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Abstract polytopes
Given a fixed base maximal chain Φ,

* For every i ∈ {1, . . . , n− 1} there is an automorphism ρi s.t.

Φρi = Φi

.

* The automorphisms ρ0, ρ1, . . . , ρn−1 satisfy

ρ2
i = ε

(ρi ρj)
2 = ε if |i − j | > 2

(ρi−1ρi )
pi = ε.
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Abstract polytopes
Given a fixed base maximal chain Φ,
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Abstract polytopes

Theorem (E. Schulte, 1982)

Let Γ = 〈ρ0, . . . , ρn−1〉 be string C-group. Then there exists a
regular polytope P such that Aut(P) = Γ.

ρ0•
ρ1•

ρn−2•
ρn−1•p1

...
pn−1
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Abstract polytopes
Quick review

* Faces of different ranks (dimenssions) + Incidence
relation.

* Maximal chains have an element of each rank

* Diamond condition.

* Strong connectivity.

* Regular: maximal reflectional symmetry.

* ARP are determined by their automorphism groups.

- Involutions.

- String Coxeter diagram.

- Intersection condition.
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Hypertopes
A hypertope is a thin, residually connected geometry.

* Geometry:

- A collection of faces of different types with an incidence
relation.

- Every maximal set of mutually incident elements (chamber)
has an element of each type.

* Thinness

- Given a chamber C and a specific type i , there exists a
unique chamber C i that shares all but the element of type
i with C .

* Residually connected...
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Hypertopes

Let H be a hypertope

* A type-preserving automorphism is a permutation of the
faces of H that preserves type and incidence.

* The group AutI(H) acts faithfully on the set of chambers.

* A hypertope is regular if this action is transitive.
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Hypertopes

* 2-hypertopes = 2-polyopes = combinatorial polygons.

* 3-hypertopes = hypermaps.

* 4-hypertopes...
* 17-hypertopes...
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Hypertopes
Given a fixed chamber C of a regular hypertope H,

* For every i ∈ I there is an automorphism Cρi = C i .

* The Coxeter diagram is a complete graph with labels pi ,j
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Hypertopes
Given a fixed chamber C of a regular hypertope H,
* For every i ∈ I there is an automorphism Cρi = C i .

* The automorphisms {ρi : i ∈ I} satisfy

ρ2
i = ε

(ρi ρj)
pi ,j = ε.

* The Coxeter diagram is a complete graph with labels pi ,j
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Hypertopes
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Hypertopes

ρ1•
ρ0•

•
ρ2

3

3

3
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Hypertopes

Theorem (Fernandes-Leemans-Weiss, 2016)

Let Γ = 〈ρ0, . . . , ρn−1〉 be a C-group. Let H be the coset
geometry associated to Γ. If Γ is flag-transitive on H, then
H is a regular hypertope and AutI(H) = Γ.
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Hypertopes

ρ1•
ρ0•

•
ρ2

3

3

3
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The halving operation

Given an abstract n-polytope P of type {p1, . . . , pn−2, 2s} and
automorphism group Aut(P) = 〈$0, . . . , $n−1〉 the halving
operation is given by:

η : 〈$0, . . . , $n−1〉 → 〈ρ0, . . . , ρn−1〉 ,

where

ρi =

{
$i , if 0 6 i 6 n− 2,
$n−1$n−2$n−1, if i = n− 1,
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The halving operation

$0•
$1•

$n−2•
$n−1•p1

...
2s

↓ η
ρn−2•

ρ0•
ρ1•

ρn−4•
ρn−3•

•
ρn−1

s
p1

...
pn−3

pn−2

pn−2
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The halving operation
Theorem (M.-Weiss)
Let P be a non-degenerate, regular n-polytope of type
{p1, . . . , pn−2, 2s}. Let H(P) be the group resulting after
applying the halving opperation to Aut(P). Then there exists a
regular hypertope H(P) such that AutI (H(P)) = H (P).

The
Coxeter diagram of H(P) is

ρn−2•
ρ0•

ρ1•
ρn−4•

ρn−3•
•

ρn−1

s
p1

...
pn−3

pn−2

pn−2
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The halving operation

* Finite globally toroidal hypertopes.

* Finite locally spherical hypertopes.

* Finite locally toroidal hypertopes.

* Infinite families of finite hypermaps of some particular
types.

* Regular hypertopes with prescribed labels on the Coxeter
diagram
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Thank you!
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