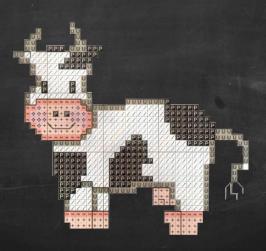
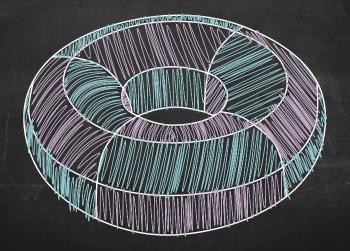
Simetrías de toros cuadriculados

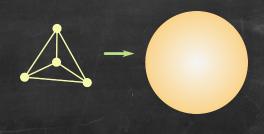
Antonio Montero José Collins

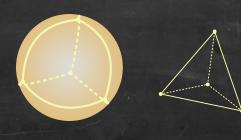
Centro de Ciencias Matemáticas - UNAM

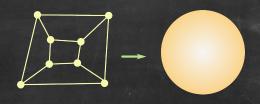
Seminario de Estudiantes CIMAT 10 de Noviembre de 2017

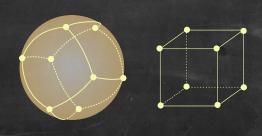


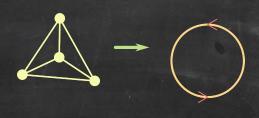


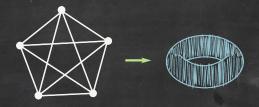












¿Cómo generalizamos esto a dimensiones superiores?

* No es obvio...

¿Cómo generalizamos esto a dimensiones superiores?

- * No es obvio...
- * Generalizaciones combinatorias (algebraicas):
 - Politopos Abstractos.
 - Maniplexes.

¿Cómo generalizamos esto a dimensiones superiores?

- * No es obvio...
- * Generalizaciones combinatorias (algebraicas):
 - Politopos Abstractos.
 - Maniplexes.
- * Estas generalizaciones pierden el espíritu topológico (geométrico) de los mapas...

Teorema (Uniformización, Poincaré 1907) Toda superficie S es homeomorfa a X/Λ donde $X \in \{S^2, \mathbb{H}^2, \mathbb{E}^2\}$ y Λ es un grupo discreto de isometrías de X sin puntos fijos.

Teorema (Uniformización, Poincaré 1907) Toda superficie S es homeomorfa a X/Λ donde $X \in \{\mathbb{S}^2, \mathbb{H}^2, \mathbb{E}^2\}$ y Λ es un grupo discreto de isometrías de Xsin puntos fijos.

Un mapa M en una superficie $S = X/\Lambda$ induce una teselación \mathcal{U} de X tal que Λ es un grupo de isometrías de \mathcal{U} .

Teorema (Uniformización, Poincaré 1907) Toda superficie S es homeomorfa a X/Λ donde $X \in \{S^2, \mathbb{H}^2, \mathbb{E}^2\}$ y Λ es un grupo discreto de isometrías de X sin puntos fijos.

Un mapa $\mathcal M$ en una superficie $S=X/\Lambda$ induce una teselación $\mathcal U$ de X tal que Λ es un grupo de isometrías de $\mathcal U$.

Si $X \rightarrow S$ es la función cociente, entonces

* {Vértices de \mathcal{U} } \rightarrow {Vértices de \mathcal{M} }.

Teorema (Uniformización, Poincaré 1907) Toda superficie S es homeomorfa a X/Λ donde $X \in \{\mathbb{S}^2, \mathbb{H}^2, \mathbb{E}^2\}$ y Λ es un grupo discreto de isometrías de X sin puntos fijos.

Un mapa $\mathcal M$ en una superficie $S=X/\Lambda$ induce una teselación $\mathcal U$ de X tal que Λ es un grupo de isometrías de $\mathcal U$.

Si $X \rightarrow S$ es la función cociente, entonces

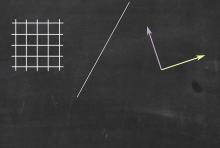
- * {Vértices de \mathcal{U} } \rightarrow {Vértices de \mathcal{M} }.
- * {Aristas de \mathcal{U} } \rightarrow {Aristas de \mathcal{M} }.

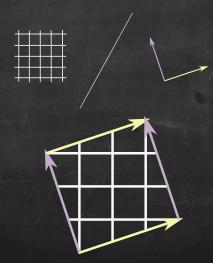
Teorema (Uniformización, Poincaré 1907) Toda superficie S es homeomorfa a X/Λ donde $X \in \{\mathbb{S}^2, \mathbb{H}^2, \mathbb{E}^2\}$ y Λ es un grupo discreto de isometrías de X sin puntos fijos.

Un mapa $\mathcal M$ en una superficie $S=X/\Lambda$ induce una teselación $\mathcal U$ de X tal que Λ es un grupo de isometrías de $\mathcal U$.

Si $X \rightarrow S$ es la función cociente, entonces

- * {Vértices de \mathcal{U} } \rightarrow {Vértices de \mathcal{M} }.
- * {Aristas de \mathcal{U} } \rightarrow {Aristas de \mathcal{M} }.
- * {Caras de U} \rightarrow {Caras de M}.





Un toro teselado n-dimensional es el cociente de una teselación \mathcal{U} de \mathbb{E}^n por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

Un toro teselado n-dimensional es el cociente de una teselación $\mathcal U$ de $\mathbb E^n$ por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal U)$.

Un toro teselado n-dimensional es el cociente de una teselación $\mathcal U$ de $\mathbb E^n$ por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal U)$.

Un toro teselado \mathcal{U}/Λ es cuadriculado si \mathcal{U} es la teselación de cubos de \mathbb{E}^n .

* Vértices de U/Λ : Órbitas de vértices de U bajo Λ .

Un toro teselado n-dimensional es el cociente de una teselación $\mathcal U$ de $\mathbb E^n$ por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal U)$.

- * Vértices de U/Λ : Órbitas de vértices de U bajo Λ .
- * Aristas de \mathcal{U}/Λ : Órbitas de aristas de \mathcal{U} bajo Λ .

Un toro teselado n-dimensional es el cociente de una teselación $\mathcal U$ de $\mathbb E^n$ por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal U)$.

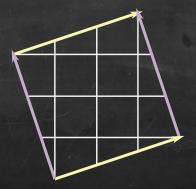
- * Vértices de U/Λ : Órbitas de vértices de U bajo Λ .
- * Aristas de \mathcal{U}/Λ : Órbitas de aristas de \mathcal{U} bajo Λ .
- *

Un toro teselado *n*-dimensional es el cociente de una teselación \mathcal{U} de \mathbb{E}^n por un grupo latiz $\Lambda \leqslant \operatorname{Aut}(\mathcal{U})$.

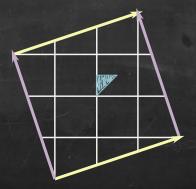
- * Vértices de U/Λ : Órbitas de vértices de U bajo Λ .
- * Aristas de \mathcal{U}/Λ : Órbitas de aristas de \mathcal{U} bajo Λ .
- * .
- * Banderas de U/Λ : (F_0, F_1, \ldots, F_n) .

* Banderas de U/Λ : (F_0, F_1, \ldots, F_n) .

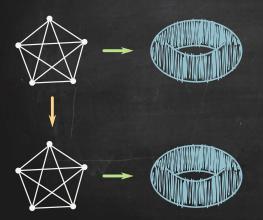
* Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .



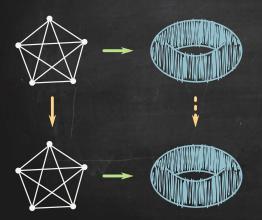
* Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .

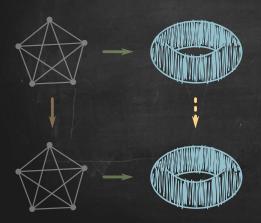


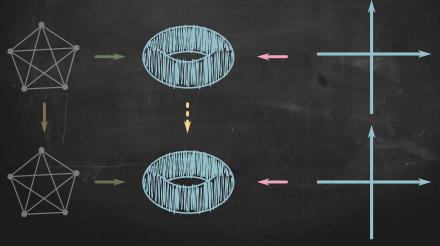
¿Simetrías?

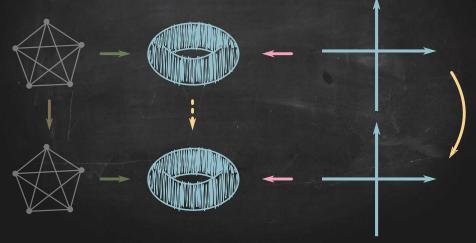


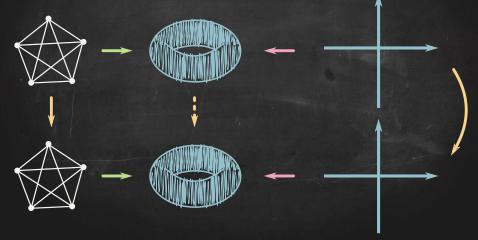
¿Simetrías?

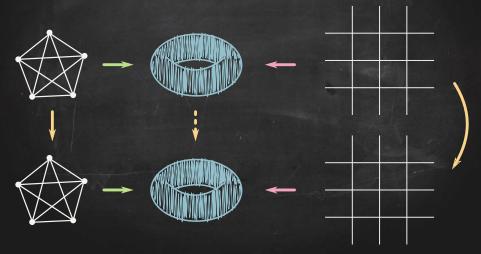












$$\begin{array}{c} \mathcal{U} \stackrel{S}{\longrightarrow} \mathcal{U} \\ \downarrow & \downarrow \\ \mathcal{U}/\Lambda \stackrel{\overline{S}}{\longrightarrow} \mathcal{U}/\Lambda \end{array}$$

* ¿Cuándo una isometría 5 "es compatible" con el cociente?

$$\begin{array}{c} \mathcal{U} \stackrel{S}{\longrightarrow} \mathcal{U} \\ \downarrow & \downarrow \\ \mathcal{U}/\Lambda \stackrel{\overline{S}}{\dashrightarrow} \mathcal{U}/\Lambda \end{array}$$

- * ¿Cuándo una isometría 5 "es compatible" con el cociente?
- * Resulta que esto ocurre si y solo si $S \in \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)$.

$$\begin{array}{c} \mathcal{U} \stackrel{\mathsf{S}}{\longrightarrow} \mathcal{U} \\ \downarrow & \downarrow \\ \mathcal{U}/\Lambda \stackrel{\overline{\mathsf{S}}}{\dashrightarrow} \mathcal{U}/\Lambda \end{array}$$

- * ¿Cuándo una isometría 5 "es compatible" con el cociente?
- * Resulta que esto ocurre si y solo si $S \in \text{Norm}_{\text{Aut}(\mathcal{U})}(\Lambda)$.
- * Los elementos de Λ actúan trivialmente \mathcal{U}/Λ .

$$\begin{array}{c} \mathcal{U} \xrightarrow{S} \mathcal{U} \\ \downarrow & \downarrow \\ \mathcal{U}/\Lambda \xrightarrow{-\overline{S}} \mathcal{U}/\Lambda \end{array}$$

- * ¿Cuándo una isometría S "es compatible" con el cociente?
- * Resulta que esto ocurre si y solo si $S \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * Los elementos de Λ actúan trivialmente \mathcal{U}/Λ .
- * Esto nos permite definir

$$\operatorname{\mathsf{Aut}}(\mathcal{U}/\Lambda) = \operatorname{\mathsf{Norm}}_{\operatorname{\mathsf{Aut}}(\mathcal{U})}(\Lambda)/\Lambda.$$

* Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .

- * Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .
- * Hay una acción de $\operatorname{Aut}(\mathcal{U}/\Lambda)$ en el conjunto de Banderas de \mathcal{U}/Λ .

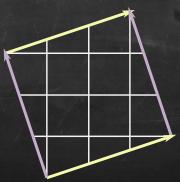
- * Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .
- * Hay una acción de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ en el conjunto de Banderas de \mathcal{U}/Λ .
- * Esta acción es libre.

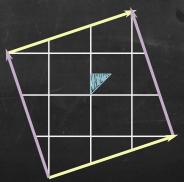
- * Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .
- * Hay una acción de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ en el conjunto de Banderas de \mathcal{U}/Λ .
- * Esta acción es libre.
- * Un toro cuadriculado es regular si $\operatorname{Aut}(\mathcal{U}/\Lambda)$ actúa transitivamente en las Banderas.

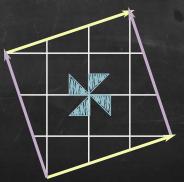
- * Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .
- * Hay una acción de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ en el conjunto de Banderas de \mathcal{U}/Λ .
- * Esta acción es libre.
- * Un toro cuadriculado es regular si $\operatorname{Aut}(\mathcal{U}/\Lambda)$ actúa transitivamente en las Banderas.

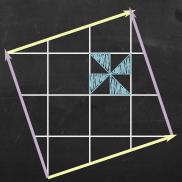
Suponga que U es regular...

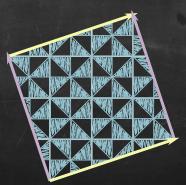
- * Banderas de \mathcal{U}/Λ : (F_0, F_1, \ldots, F_n) .
- * Hay una acción de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ en el conjunto de Banderas de \mathcal{U}/Λ .
- * Esta acción es libre.
- * Un toro cuadriculado es regular si $\operatorname{Aut}(\mathcal{U}/\Lambda)$ actúa transitivamente en las Banderas.

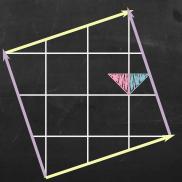


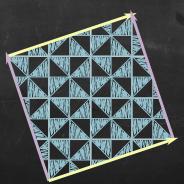






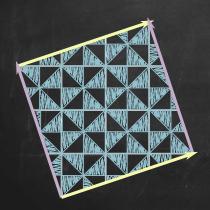




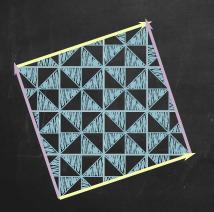


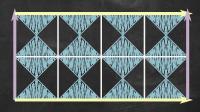
¿Son éstas todas las posiBilidades?

¿Son éstas todas las posibilidades?



¿Son éstas todas las posibilidades?





Problema: Clasificar toros cuadriculados hasta tipo de simetría.

Problema: Clasificar toros cuadriculados hasta tipo de simetría.

¿Cuántas órbitas de banderas tienen?

Problema: Clasificar toros cuadriculados hasta tipo de simetría.

¿Cuántas órbitas de banderas tienen?

¿Cómo se acomodan localmente estas órbitas?

- * Los toros cuadriculados n-dimensionales regulares están clasificados:
 - Si n = 2 existen dos familias. (Coxeter, 1948)

- * Los toros cuadriculados *n*-dimensionales regulares están clasificados:
 - Si n=2 existen dos familias. (Coxeter, 1948)
 - Si $n \ge 3$ hay tres familias. (McMullen and Schulte, 1996)

- * Los toros cuadriculados *n*-dimensionales regulares están clasificados:
 - Si n=2 existen dos familias. (Coxeter, 1948)
 - Si $n \ge 3$ hay tres familias. (McMullen and Schulte, 1996)
- * Toros cuadriculados quirales sólo existen en dimensión 2 (mapas quirales). (Hartley, McMullen and Schulte, 1999)

¿Qué pasa con dimensiones superiores?

¿Qué pasa con dimensiones superiores?

* Toros cuadriculados de dimensión 2 están clasificados (Brehm y Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)

¿Qué pasa con dimensiones superiores?

- * Toros cuadriculados de dimensión 2 están clasificados (Brehm y Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)
- * Toros cuadriculados de dimensión 3 también están clasificados (Hubard, Orbanic, Pellicer y Weiss, 2012)

¿Qué sabemos?

¿Qué pasa con dimensiones superiores?

- * Toros cuadriculados de dimensión 2 están clasificados (Brehm y Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)
- * Toros cuadriculados de dimensión 3 también están clasificados (Hubard, Orbanic, Pellicer y Weiss, 2012)
 - Corolario: No existen toros cuadriculados de dimensión 3 con 2 orbitas en Banderas.

¿Qué sabemos?

¿Qué pasa con dimensiones superiores?

- * Toros cuadriculados de dimensión 2 están clasificados (Brehm y Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)
- * Toros cuadriculados de dimensión 3 también están clasificados (Hubard, Orbanic, Pellicer y Weiss, 2012)
 - Corolario: No existen toros cuadriculados de dimensión 3 con 2 orbitas en Banderas.
 - P: ¿Podemos clasificar los toros cuadriculados con 2 órbitas?

¿Qué sabemos?

¿Qué pasa con dimensiones superiores?

- * Toros cuadriculados de dimensión 2 están clasificados (Brehm y Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)
- * Toros cuadriculados de dimensión 3 también están clasificados (Hubard, Orbanic, Pellicer y Weiss, 2012)
 - Corolario: No existen toros cuadriculados de dimensión 3 con 2 orbitas en Banderas.
 - P: ¿Podemos clasificar los toros cuadriculados con 2 órbitas?
 - P: ¿Siquiera existen para n > 3?

* Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda)=\operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \lneq Aut(\mathcal{U})$.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \lneq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \lneq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $Aut(U) = T(U) \rtimes S$ donde S es el estabilizador de un vértice o.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \leq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $Aut(\mathcal{U}) = T(\mathcal{U}) \rtimes S$ donde S es el estabilizador de un vértice o.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \leq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $Aut(\mathcal{U}) = T(\mathcal{U}) \rtimes S$ donde S es el estabilizador de un vértice o.
- * $s = ts' \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$ si y solo si $s' \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $s \in S$ normaliza a Λ si y solo si s preserva $o\Lambda$.

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \leq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $Aut(\mathcal{U}) = T(\mathcal{U}) \rtimes S$ donde S es el estabilizador de un vértice o.
- * $s = ts' \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$ si y solo si $s' \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $s \in S$ normaliza a Λ si y solo si s preserva $o\Lambda$.
- * $-id: x \mapsto -x \text{ siempre } o\Lambda.$

- * Recordemos que $\operatorname{Aut}(\mathcal{U}/\Lambda) = \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)/\Lambda$.
- * \mathcal{U}/Λ podría no ser regular, incluso si \mathcal{U} lo es.
- * En los ejemplos, $Norm_{Aut(\mathcal{U})}(\Lambda) \lneq Aut(\mathcal{U})$.
- * Si t es una traslación de \mathcal{U} , entonces $t \in \mathsf{Norm}_{\mathsf{Aut}(\mathcal{U})}(\Lambda)$.
- * $Aut(\mathcal{U}) = T(\mathcal{U}) \rtimes S$ donde S es el estabilizador de un vértice o.
- * $s = ts' \in \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)$ si y solo si $s' \in \operatorname{Norm}_{\operatorname{Aut}(\mathcal{U})}(\Lambda)$.
- * $s \in S$ normaliza a Λ si y solo si s preserva $o\Lambda$.
- * $-id: x \mapsto -x \text{ siempre } o\Lambda.$
- * $\mathcal{U}/\Lambda\cong\mathcal{U}/\Lambda'$ si y solo si Λ and Λ son conjugados en Aut (\mathcal{U}) .

$$\{ extstyle ex$$

$$\{ ext{Toros cuadriculados}\} \longrightarrow \left\{egin{array}{c} N/\Lambda \ N \leqslant \operatorname{Aut}(\mathcal{U}) = T(\mathcal{U})
times S \ \langle T(\mathcal{U}), -id
angle \leqslant N \end{array}
ight\}$$

$$\left\{\mathsf{Toros}\;\mathsf{cuadriculados}\right\} \longrightarrow \left\{\begin{array}{c} \mathsf{N} \leqslant \mathsf{Aut}(\mathcal{U}) = \mathsf{T}(\mathcal{U}) \rtimes \mathsf{S} \\ \langle \mathsf{T}(\mathcal{U}), -id \rangle = \mathsf{T}(\mathcal{U}) \rtimes \langle -id \rangle \leqslant \mathsf{N} \end{array}\right\}$$

$$\{ ext{Toros cuadriculados}\} \longrightarrow \left\{egin{array}{c} N/\Lambda \ N \leqslant \operatorname{Aut}(\mathcal{U}) = T(\mathcal{U})
times S \ \langle T(\mathcal{U}), -id
angle \leqslant N \end{array}
ight\}$$

$$\left\{\mathsf{Toros}\;\,\mathsf{cuadriculados}\right\} \longrightarrow \left\{\begin{array}{c} N \leqslant \mathsf{Aut}(\mathcal{U}) = T(\mathcal{U}) \rtimes S \\ \langle T(\mathcal{U}), -\mathsf{id} \rangle = T(\mathcal{U}) \rtimes \langle -\mathsf{id} \rangle \leqslant N \end{array}\right\}$$

$$\left\{ extstyle{ t Tipos de simetría}
ight\}\longrightarrow \left\{egin{array}{c} extstyle{ t Clases de conjugación de} \ \langle -id
angle\leqslant extstyle{ t N}'\leqslant S \end{array}
ight\}$$

Toros

$$\{ ext{Toros cuadriculados}\} \longrightarrow \left\{egin{array}{c} N/\Lambda \ N \leqslant \operatorname{Aut}(\mathcal{U}) = T(\mathcal{U})
times S \ \langle T(\mathcal{U}), -id
angle \leqslant N \end{array}
ight\}$$

$$\left\{\mathsf{Toros}\;\,\mathsf{cuadriculados}\right\} \longrightarrow \left\{\begin{array}{c} N \leqslant \mathsf{Aut}(\mathcal{U}) = T(\mathcal{U}) \rtimes S \\ \langle T(\mathcal{U}), -\mathsf{id} \rangle = T(\mathcal{U}) \rtimes \langle -\mathsf{id} \rangle \leqslant N \end{array}\right\}$$

$$\left\{ extstyle{ t Tipos de simetría}
ight\}\longrightarrow \left\{egin{array}{c} extstyle{ t Clases de conjugación de} \ \langle -id
angle\leqslant extstyle{ t N}'\leqslant extstyle{ t S} \end{array}
ight\}$$

Número de órbitas en banderas $= [Aut(\mathcal{U}) : N] = [S : N']$

 $\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant N' \leqslant S \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$

$$\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$$

$$\left\{egin{array}{ll} ext{Clases de conjugación} & Clasificación de \\ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \Longrightarrow egin{array}{ll} ext{Clasificación de} \\ ext{toros cuadriculados} \end{array}$$

$$\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$$

$$\left\{egin{array}{ll} ext{Clases de conjugación} & & ext{Clasificación de} \ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \Longrightarrow \left\{egin{array}{ll} ext{Clasificación de} \ ext{toros cuadriculados} \end{array}
ight.$$

* Solo se resuelve la mitad del problema.

$$\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant N' \leqslant S \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$$

$$\left\{egin{array}{ll} extsf{Clases} ext{ de conjugación} \ ext{de } \langle -id
angle \leqslant extsf{N}' \leqslant ext{S} \end{array}
ight\} \Longrightarrow egin{array}{ll} ext{Clasificación de} \ ext{toros cuadriculados} \end{array}$$

- * Solo se resuelve la mitad del problema.
- * No es nada práctica

$$\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant N' \leqslant S \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$$

$$\left\{egin{array}{ll} ext{Clases de conjugación} & & ext{Clasificación de} \ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \Longrightarrow \left\{egin{array}{ll} ext{Clasificación de} \ ext{toros cuadriculados} \end{array}
ight.$$

- * Solo se resuelve la mitad del problema.
- * No es nada práctica, el grupo S es ENORME: 2ºn!.

$$\left\{egin{array}{l} ext{Clases de conjugación} \ ext{de } \langle -id
angle \leqslant N' \leqslant S \end{array}
ight\} \longrightarrow \left\{egin{array}{l} ext{Candidatos para el} \ ext{Grupo de automorfismos} \end{array}
ight\}$$

$$\left\{egin{array}{ll} ext{Clases de conjugación} & & ext{Clasificación de} \ ext{de } \langle -id
angle \leqslant ext{N}' \leqslant ext{S} \end{array}
ight\} \Longrightarrow \left\{egin{array}{ll} ext{Clasificación de} \ ext{toros cuadriculados} \end{array}
ight.$$

- * Solo se resuelve la mitad del problema.
- * No es nada práctica, el Grupo S es ENORME: $2^n n!$
- * Aun puede resultar útil...

Un toro cuadriculado n-dimensional \mathcal{U}/Λ es de pocas órbitas si el número de órbitas en banderas de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ es a lo más n.

Un toro cuadriculado n-dimensional \mathcal{U}/Λ es de pocas órbitas si el número de órbitas en banderas de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ es a lo más n.

* Los toros cuadriculados regulares son de pocas órbitas.

Un toro cuadriculado n-dimensional \mathcal{U}/Λ es de pocas Órbitas si el número de Órbitas en Banderas de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ es a lo más n.

- * Los toros cuadriculados regulares son de pocas órbitas.
- * Los toros cuadriculados de 2 órbitas son de pocas órbitas.

Un toro cuadriculado n-dimensional \mathcal{U}/Λ es de pocas órbitas si el número de órbitas en banderas de $\mathrm{Aut}(\mathcal{U}/\Lambda)$ es a lo más n.

- * Los toros cuadriculados regulares son de pocas órbitas.
- * Los toros cuadriculados de 2 órbitas son de pocas órbitas.

$$\left\{\begin{array}{c} \textit{Clases de conjugación} \\ \textit{de } \langle -id \rangle \leqslant \textit{N}' \leqslant \textit{S} \\ [\textit{S}:\textit{N}'] \leqslant \textit{n} \end{array}\right\} \Longrightarrow \begin{array}{c} \textit{Clasificación de toros} \\ \textit{de pocas órbitas} \end{array}$$

* Toros cuadriculados regulares.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.
 - Si n es par, existe exactamente una familia.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.
 - Si n es par, existe exactamente una familia.
- * Si n = 4
 - Existe una familia de toros cuadriculados de 2 órbitas.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.
 - Si n es par, existe exactamente una familia.
- * Si n = 4
 - Existe una familia de toros cuadriculados de 2 órbitas.
 - Existe una familia de toros cuadriculados de 3 órbitas.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.
 - Si n es par, existe exactamente una familia.
- * Si n = 4
 - Existe una familia de toros cuadriculados de 2 órbitas.
 - Existe una familia de toros cuadriculados de 3 órbitas.
- * Si $n \ge 5$, no existen toros cuadriculados con k orbitas para 2 < k < n.

- * Toros cuadriculados regulares.
- * Toros cuadriculados de dos órbitas:
 - Si n es impar, entonces no existen.
 - Si n es par, existe exactamente una familia.
- * Si n = 4
 - Existe una familia de toros cuadriculados de 2 órbitas.
 - Existe una familia de toros cuadriculados de 3 órbitas.
- * Si $n \ge 5$, no existen toros cuadriculados con k orbitas para 2 < k < n.
- * Para todo $n \ge 4$ existen 5 familias de toros cuadriculados de n órbitas, todos con el mismo tipo de simetría.

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n (n=2, n=4) también están clasificados:

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n (n=2, n=4) también están clasificados:

* n=2: Consecuencia de la clasificación de HOPW, 2012.

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n (n=2, n=4) también están clasificados:

* n=2: Consecuencia de la clasificación de HOPW, 2012.

- * n = 4:
 - Toros regulares: dos familias.

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n (n=2, n=4) también están clasificados:

- * n=2: Consecuencia de la clasificación de HOPW, 2012.
- * n = 4:
 - Toros regulares: dos familias.
 - Toros de 2 órbitas: una familia.

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n (n=2, n=4) también están clasificados:

- * n=2: Consecuencia de la clasificación de HOPW, 2012.
- * n = 4:
 - Toros regulares: dos familias.
 - Toros de 2 órbitas: una familia.
 - Toros de 3 órbitas: dos familias con diferente tipo de simetría.

Toros teselados de pocas órbitas inducidos por otras teselaciones regulares de \mathbb{E}^n ($n=2,\,n=4$) también están clasificados:

- * n=2: Consecuencia de la clasificación de HOPW, 2012.
- * n = 4:
 - Toros regulares: dos familias.
 - Toros de 2 órbitas: una familia.
 - Toros de 3 órbitas: dos familias con diferente tipo de simetría.
 - Toros de 4 órbitas: no existen.

Problemas abiertos/trabajo a futuro

* Clasificar toros teselados con pocas órbitas inducidos por teselaciones no regulares.

Problemas abiertos/trabajo a futuro

- * Clasificar toros teselados con pocas órbitas inducidos por teselaciones no regulares.
- * Estudiar el fenómeno de pocas órbitas en otras variedades euclidianas

Problemas abiertos/trabajo a futuro

- * Clasificar toros teselados con pocas órbitas inducidos por teselaciones no regulares.
- * Estudiar el fenómeno de pocas órbitas en otras variedades euclidianas
- * Lograr una clasificación completa de toros cuadriculados.

Gracias!