Cubos de colores y otras cosas parecidas

Antonio Montero

Centro de Ciencias Matemáticas, UNAM

2a Escuela de Verano en Simetrías de Estructuras Combinatorias Cuernavaca, Mor. Julio 2017

* Un politopo abstracto de rango n es un conjunto parcialmente ordenado que satisface...

* Un politopo abstracto de rango n es un conjunto parcialmente ordenado que satisface... ¡Fuchi!

- * Un politopo abstracto de rango n es un conjunto parcialmente ordenado que satisface... ¡Fuchi!
- * Lo que nos gusta recordar:

- * Un politopo abstracto de rango n es un conjunto parcialmente ordenado que satisface... ¡Fuchi!
- * Lo que nos gusta recordar:
 - Tiene vértices (0-caras), aristas (1-caras), 2-caras, ..., (n-1)-caras.

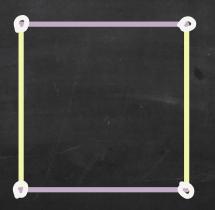
- * Un politopo abstracto de rango n es un conjunto parcialmente ordenado que satisface... ¡Fuchi!
- * Lo que nos gusta recordar:
 - Tiene vértices (0-caras), aristas (1-caras), 2-caras, ..., (n-1)-caras.
 - Es algo combinatorio: ¡Nos podemos hacer de la vista gorda con la geometría!

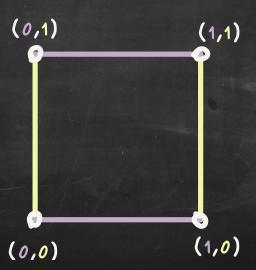
* No van a ver la definición de politopo abstracto (otra vez).

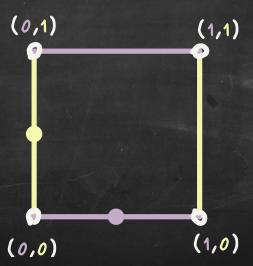
- * No van a ver la definición de politopo abstracto (otra vez).
- * No les voy a dar un solo teorema.

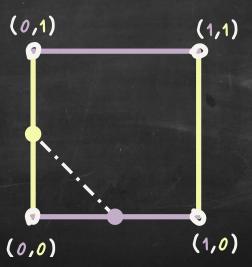
- * No van a ver la definición de politopo abstracto (otra vez).
- * No les voy a dar un solo teorema.
- * Vamos a construir muchos ejemplos.

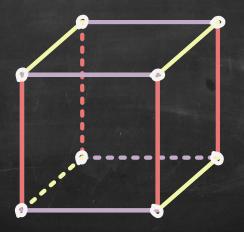
- * No van a ver la definición de politopo abstracto (otra vez).
- * No les voy a dar un solo teorema.
- * Vamos a construir muchos ejemplos.
- * Les voy a hablar mucho del único politopo que conozco bien

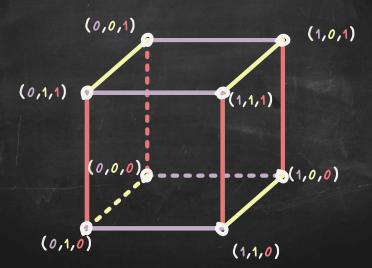


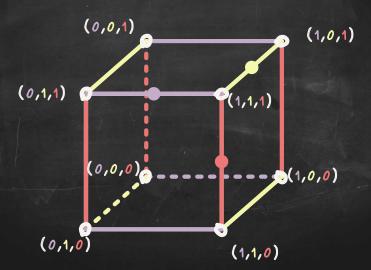


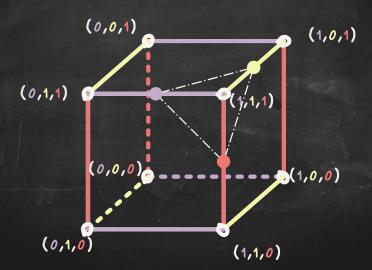


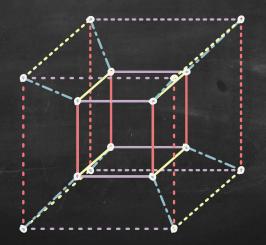


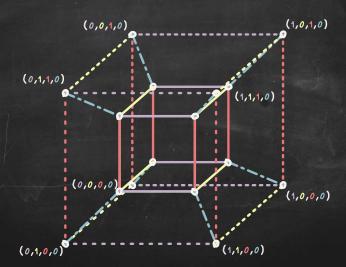


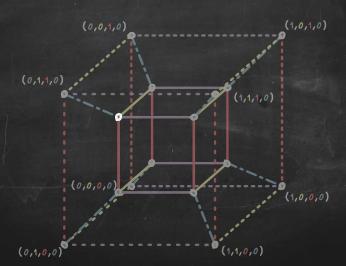


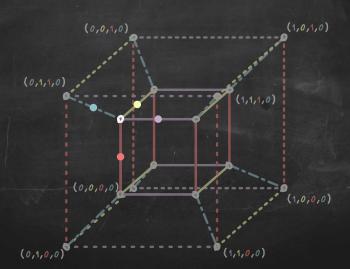


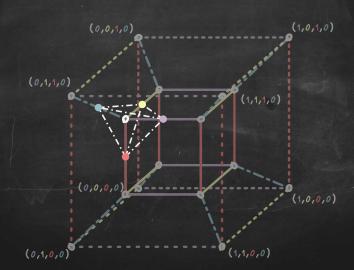












* Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.

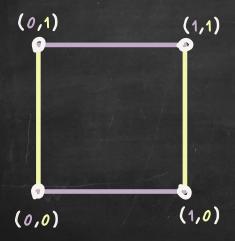
- * Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.
- * Aristas: parejas de vértices con n-1 coordenadas fijas.

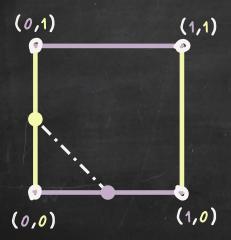
- * Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.
- * Aristas: parejas de vértices con n-1 coordenadas fijas.
- * 2-caras: familias de vértices con n-2 coordenadas fijas.

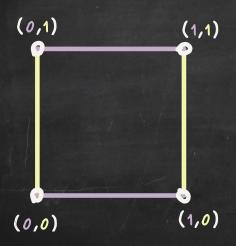
- * Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.
- * Aristas: parejas de vértices con n-1 coordenadas fijas.
- * 2-caras: familias de vértices con n-2 coordenadas fijas.
- * ...
- * i-caras: familias de vértices con n-i coordenadas fijas.
- *

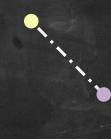
- * Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.
- * Aristas: parejas de vértices con n-1 coordenadas fijas.
- * 2-caras: familias de vértices con n-2 coordenadas fijas.
- * ...
- * i-caras: familias de vértices con n-i coordenadas fijas.
- * ...
- * (n-1)-caras: familias de vértices con 1 coordenada fija.

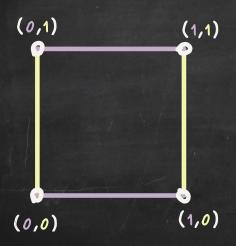
- * Vértices: $\{0,1\}^n$, las *n*-sucesiones de 0's y 1's.
- * Aristas: parejas de vértices con n-1 coordenadas fijas.
- * 2-caras: familias de vértices con n-2 coordenadas fijas.
- * ...
- * i-caras: familias de vértices con n-i coordenadas fijas.
- * ...
- * (n-1)-caras: familias de vértices con 1 coordenada fija.
- * Figura de vértice: Un (n-1)-simplejo.

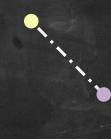


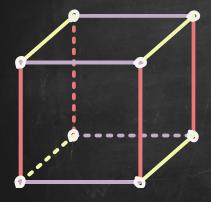


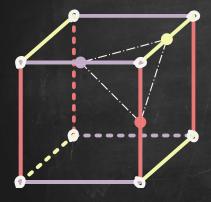


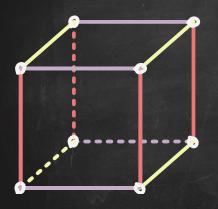


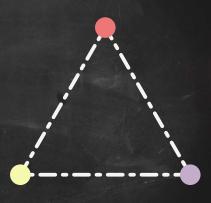


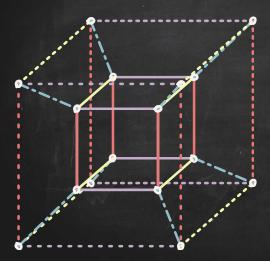


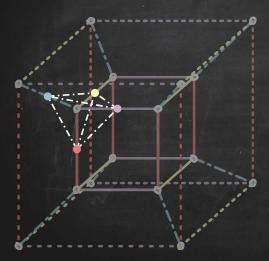


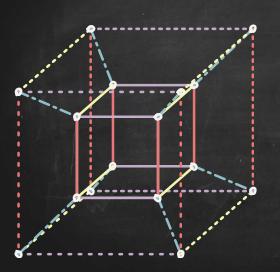












Si comenzamos con \mathcal{P} un n-politopo el politopo $2^{\mathcal{P}}$ se construye igualito al cubo:

* Vértices: $\{0,1\}^V$, V = |Vértices de P|.

- * Vértices: $\{0,1\}^V$, $V = |Vértices\ de\ P|$.
- * Aristas: Determinadas por los vértices de P (¡Colores!).

- * Vértices: $\{0,1\}^V$, $V = |Vértices\ de\ P|$.
- * Aristas: Determinadas por los vértices de P (¡Colores!).
- * 2-caras: Determinadas por aristas de \mathcal{P} .

- * Vértices: $\{0,1\}^V$, $V = |Vértices\ de\ P|$.
- * Aristas: Determinadas por los vértices de P (¡Colores!).
- * 2-caras: Determinadas por aristas de \mathcal{P} .
- * ...
- * i-caras: Determinadas por (i-1)-caras de \mathcal{P} .
- * .

- * Vértices: $\{0,1\}^V$, V = |Vértices| de $\mathcal{P}|$.
- * Aristas: Determinadas por los vértices de P (¡Colores!).
- * 2-caras: Determinadas por aristas de \mathcal{P} .
- * ...
- * i-caras: Determinadas por (i-1)-caras de \mathcal{P} .
- * ...
- * (n+1)-cara: Determinada por \mathcal{P} .

- * Vértices: $\{0,1\}^V$, $V = |Vértices\ de\ P|$.
- * Aristas: Determinadas por los vértices de P (¡Colores!).
- * 2-caras: Determinadas por aristas de \mathcal{P} .
- * ...
- * i-caras: Determinadas por (i-1)-caras de \mathcal{P} .
- * ...
- * (n+1)-cara: Determinada por \mathcal{P} .

pero...

pero...

¡Es la construcción que vimos antes!

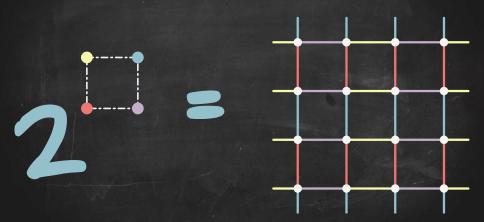
pero...

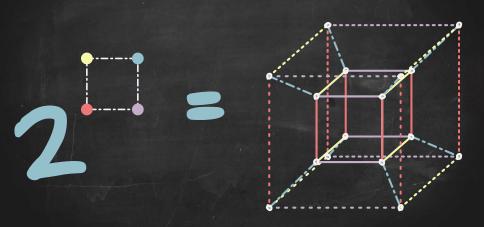
¡Es la construcción que vimos antes!

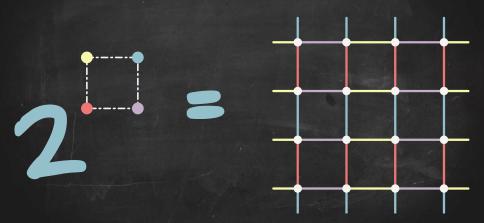
$$2^{n-\text{simplejo}} = (n+1) - \text{cubo}$$

Cubos de colores y más

2







Es un 3-politopo (mapa) que tiene:

* 2m vértices

- * 2^m vértices
- * $2^{m-1} \times m$ aristas

- * 2m vértices
- * $2^{m-1} \times m$ aristas
- * $2^{m-2} \times m$ cuadrados

2POlíGono

- * 2^m vértices
- * $2^{m-1} \times m$ aristas
- * $2^{m-2} \times m$ cuadrados
- * Vive en una superficie de Género $2^{m-3}(m-4)+1$.

Si \mathcal{P} es un n-politopo lo más probable es que no pueda dibujar \mathcal{P} :

Si \mathcal{P} es un *n*-politopo lo más probable es que no pueda dibujar $2^{\mathcal{P}}$... : (

Tiene propiedades decentes:

Si ${\mathcal P}$ es un n-politopo lo más probable es que no pueda dibujar $2^{{\mathcal P}_{\dots}}$: (

Tiene propiedades decentes:

* Si \mathcal{P} tiene V vértices, entonces $2^{\mathcal{P}}$ tiene 2^{V} vértices.

Si ${\mathcal P}$ es un n-politopo lo más probable es que no pueda dibujar $2^{{\mathcal P}_{\dots}}$: (

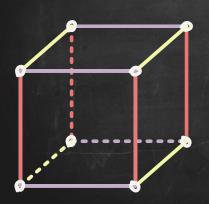
Tiene propiedades decentes:

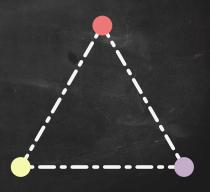
- * Si \mathcal{P} tiene V vértices, entonces $2^{\mathcal{P}}$ tiene 2^{V} vértices.
- * Las i-caras de $2^{\mathcal{P}}$ son de la forma 2^F con F una (i-1)-cara de \mathcal{P} .

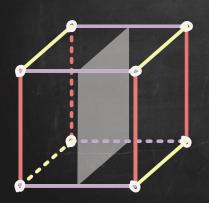
Si ${\mathcal P}$ es un n-politopo lo más probable es que no pueda dibujar $2^{{\mathcal P}_{\dots}}$: (

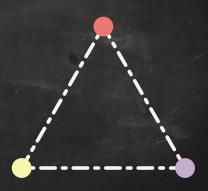
Tiene propiedades decentes:

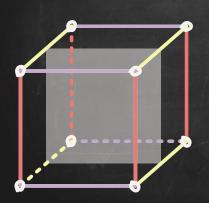
- * Si \mathcal{P} tiene V vértices, entonces $2^{\mathcal{P}}$ tiene 2^{V} vértices.
- * Las i-caras de $2^{\mathcal{P}}$ son de la forma 2^F con F una (i-1)-cara de \mathcal{P} .
- * Las figuras de vértice de $2^{\mathcal{P}}$ son todas isomorfas a \mathcal{P} .

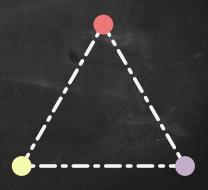


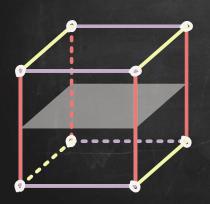


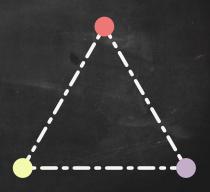


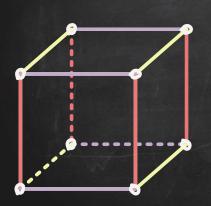


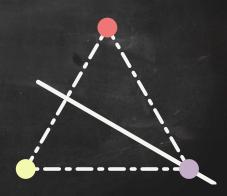


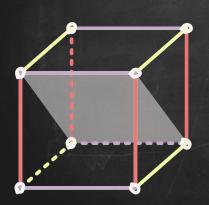


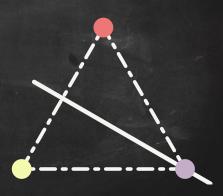


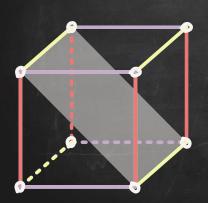


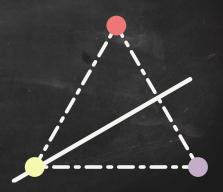


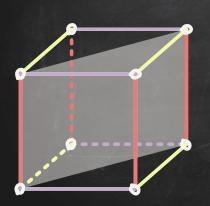


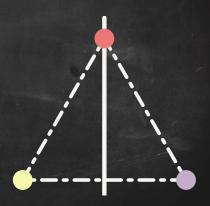












* Uno se puede convencer de que toda simetría del cubo es composición de éstas.

* Uno se puede convencer de que toda simetría del cubo es composición de éstas.

* Con palabrotas

$$\Gamma(\text{cubo}) = C_2^3 \rtimes \Gamma(\text{triángulo})$$

* En 2^p tenemos V reflexiones que preservan colores.

- * En 2^p tenemos V reflexiones que preservan colores.
- * Todo automorfismo de $\mathcal P$ induce automorfismo de $2^{\mathcal P}$.

- * En 2^p tenemos V reflexiones que preservan colores.
- * Todo automorfismo de ${\cal P}$ induce automorfismo de $2^{{\cal P}}$.
- * Con palabrotas:

$$\Gamma(2^{\mathcal{P}}) = C_2^{\mathcal{V}} \rtimes \Gamma(\mathcal{P})$$

$$\Gamma(2^{\mathcal{P}}) = C_2^{\mathcal{V}} \rtimes \Gamma(\mathcal{P})$$

Esto tiene algunas implicaciones:

$$\Gamma(2^{\mathcal{P}}) = C_2^{\mathcal{V}} \rtimes \Gamma(\mathcal{P})$$

Esto tiene algunas implicaciones:

* Si \mathcal{P} es regular, entonces $2^{\mathcal{P}}$ es regular.

$$\Gamma(2^{\mathcal{P}}) = C_2^{\mathcal{V}} \rtimes \Gamma(\mathcal{P})$$

Esto tiene algunas implicaciones:

- * Si \mathcal{P} es regular, entonces $2^{\mathcal{P}}$ es regular.
- * $2^{\mathcal{P}}$ es transitivo en vértices, sin importar qué simetría tenga \mathcal{P} .

$$\Gamma(2^{\mathcal{P}}) = C_2^{\mathcal{V}} \rtimes \Gamma(\mathcal{P})$$

Esto tiene algunas implicaciones:

- * Si \mathcal{P} es regular, entonces $2^{\mathcal{P}}$ es regular.
- * $2^{\mathcal{P}}$ es transitivo en vértices, sin importar qué simetría tenga \mathcal{P} .
- * El estabilizador de un vértice es $\Gamma(\mathcal{P})$.

* Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas figuras de vértice son isomorfas a $\mathcal P$.

- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas figuras de vértice son isomorfas a $\mathcal P$.
- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas facetas son isomorfas a $\mathcal P$.

- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas figuras de vértice son isomorfas a $\mathcal P$.
- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas facetas son isomorfas a $\mathcal P$.
- * Los politopos apretados (tight) son malos candidatos...: (

- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas figuras de vértice son isomorfas a $\mathcal P$.
- * Dado casi cualquier n-politopo (regular) $\mathcal P$ existe un (n+1)-politopo (regular) cuyas facetas son isomorfas a $\mathcal P$.
- * Los politopos apretados (tight) son malos candidatos...: (
- * Aún así, nos da un montón de ejemplos con propiedades decentes.

i Gracias!

