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Maps
how to generalize to higher dimensions?

* Not obvious...

* Combinatorial (algebraic) generalizations:

- Abstract polytopes.

- Maniplexes.

* They lose the topological (geometric) spirit of a map...
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Maps

Theorem (Geometrization)

Every surface S is homeomorphic to X/Λ where

X ∈ {S2,H2,E2} and Λ is a discrete, fixed-point free group of

isometries of X .

A map M on S = X/Λ induces a tesellation U of X such that

Λ is a group of symmetries of U .

If X → S is the quotient map, then

* {Vertices of U} → {Vertices of M}.
* {Edges of U} → {Edges of M}.
* {Faces of U} → {Faces of M}.
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Toroids

An n-dimensional toroid is the quotient of a tesselation U
of En by a full rank lattice group Λ 6 Aut(U ).

A toroid U/Λ is cubic if U is the cubic tessellation of En .

* Vertices of U/Λ : Orbits of vertices of U under Λ.

* Edges of U/Λ : Orbits of edges of U under Λ.

* ...
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Symmetries?

* Of a tesselation U of
En :

- Aut(U ): isometries of

En preserving U .

- Flags: (F0, . . . ,Fn).
- May be thought as

simplices...

- Aut(U ) acts freely on

flags.

- U is regular if Aut(U )
is transitive on flags.

- The cubic tesselation

is regular.
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Symmetries of toroids
* The “usual” definition autromorphisms of maps do not

extend to toroids naturally.

* We better use the tesselation...

U U

U/Λ U/Λ

s

* This occurs if and only if S ∈ NormAut(U )(Λ).

* The elements of Λ act trivially on U/Λ.

* It makes sense to define

Aut(U/Λ) = NormAut(U )(Λ)/Λ.
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Symmetries of toroids

* Flags of U/Λ: orbits of flags of U under Λ.

* Aut(U/Λ) = NormAut(U )(Λ)/Λ acts freely on flags of U .

* A toroid is regular if Aut(U/Λ) acts transitively on flags.

Assume U is regular...

... is every toroid U/Λ regular?
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Symmetries of toroids

Assume U is regular...

... is every toroid U/Λ regular?
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Problem:

Classify (cubic) toroids up to

symmetry type.
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What do we know?

* Regular cubic toroids are classified:

- If n = 2 there are two families. (Coxeter, 1948)

- If n > 3 there are three families. (McMullen and Schulte,

1996)

* Chiral cubic toroids are classified, they only exist in

dimension 2 (chiral maps). (Hartley, McMullen and Schulte,

1999)
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What do we know?

What about higher dimensions?

* Toroids of dimension two are classified (Brehm and

Kühnel, 2008, Hubard, Orbanic, Pellicer and Weiss, 2012)

* Toroids of dimension three are classified (Hubard,
Orbanic, Pellicer and Weiss, 2012)

- Corollary: There are no 2-orbit, cubic 3-dimensional

toroids.

- Q: Can we classify 2-orbit, cubic, n-dimensional toroids?

- Q: Do they even exist if n > 3?
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Let’s take a minute...

* Recall that Aut(U/Λ) = NormAut(U )(Λ)/Λ.

* In the example, NormAut(U )(Λ) = (Aut(U ))+ .

* If t is a translation of U , then t ∈ NormAut(U )(Λ).

* Aut(U ) = T (U )o S where S is the stabilizer of a vertex o .

* s = ts ′ ∈ NormAut(U )(Λ) if and only if s ′ ∈ NormAut(U )(Λ).

* s ∈ S normalizes Λ if and only if s preserves oΛ.

* −id : x 7→ −x always preserves oΛ.

* U/Λ ∼= U/Λ′ if and only if Λ and Λ are conjugate in

Aut(U ).
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{Toroids} −→


N/Λ

N 6 Aut(U ) = T (U )o S
〈T (U ),−id〉 6 N



{Toroids} −→
{

N 6 Aut(U ) = T (U )o S
〈T (U ),−id〉 = T (U )o 〈−id〉 6 N

}

{Symetry type of toroids} −→
{

Conjugacy classes of

〈−id〉 6 N ′ 6 S

}

Number of flag-orbits = [Aut(U ) : N ] = [S : N ′]
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{
Conjugacy classes of

〈−id〉 6 N ′ 6 S

}
−→

{
Candidates for

automorphism group

}

{
Congujacy classes of

〈−id〉 6 N ′ 6 S

}
=⇒ Classification

of toroids

Tow problems:

* It only solves half of the problem.

* Not practical, the group S is HUGE: 2nn!.
* Still useful...
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Few-orbit cubic toroids

An n-dimensional toroid U/Λ is a few-orbit toroid if the

number of flag-orbits of Aut(U/Λ) is at most n.

* Regular toroids are few-orbit toroids.

* 2-orbit n-dimensional toroids are few-orbit toroids.
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Few-orbit cubic toroids
Classification

* Regular toroids.

* Two orbit toroids:

- If n is odd, there are no 2-orbit toroids.

- If n is even, there exists one family in class 2{1,2,...,n−1} .

* If n = 4
- One family of 2-orbit toroids in class 2{1,2,3} .
- One family of 3-orbit toroids.

* If n > 5, there are no cubic toroids with k orbits if

2 < k < n.

* For any n > 4 there are five families of n-orbit toroids.
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Note...

Few-orbit toroids induced by other regular tessellations of

En (n = 2, n = 4) are also classified:

* n = 2: Consequence of the classification of HOPW,

2012.

* n = 4:
- Regular toroids: two families.

- 2-orbit toroids: one family in class 2{3,4} .
- 3-orbit toroids: two families with different symmetry

type.

- 4-orbit toroids: none.
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Open problems/Future

work

* Classify few-orbit toroids induced by non-regular

tessellations.

* Study few-orbits structures in other Euclidean space

forms.

* Achieve a complete classification of (equivelar) toroids

on arbitrary dimension.
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Hvala!
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